This commit is contained in:
dopeuni444
2025-07-31 06:14:08 +04:00
parent 020b7222da
commit e8c6b4ce15
6 changed files with 1861 additions and 21 deletions

View File

@@ -11,6 +11,9 @@ class AgentBuilder {
this.cognitivePatterns = new Map();
this.adaptationEngine = new AdaptationEngine();
this.brainTechVersion = '2025.07.31';
this.realTimeAnalytics = new RealTimeAnalytics();
this.neuralOptimizer = new NeuralOptimizer();
this.cognitiveEnhancer = new CognitiveEnhancer();
this.loadTemplates();
this.initializeBrainTech();
}
@@ -22,6 +25,8 @@ class AgentBuilder {
this.neuralNetworks.set('cognitive-mapping', new CognitiveArchitectureMapping());
this.neuralNetworks.set('adaptive-learning', new AdaptiveLearningSystem());
this.neuralNetworks.set('brain-interface', new BrainComputerInterface());
this.neuralNetworks.set('neural-optimizer', this.neuralOptimizer);
this.neuralNetworks.set('cognitive-enhancer', this.cognitiveEnhancer);
this.logger.info(`🧠 Brain technology initialized with ${this.neuralNetworks.size} neural networks`);
} catch (error) {
@@ -29,6 +34,246 @@ class AgentBuilder {
}
}
// NEW: Real-time analytics system
async trackAgentPerformance(agentId, performanceData) {
try {
await this.realTimeAnalytics.trackPerformance(agentId, performanceData);
await this.neuralOptimizer.optimizeBasedOnPerformance(agentId, performanceData);
await this.cognitiveEnhancer.enhanceBasedOnPerformance(agentId, performanceData);
this.logger.info(`📊 Performance tracked for agent ${agentId}`);
} catch (error) {
this.logger.error('Failed to track agent performance:', error);
}
}
// NEW: Advanced neural optimization
async optimizeAgentNeuralNetworks(agentId) {
try {
const agent = await this.getAgent(agentId);
if (!agent) throw new Error('Agent not found');
const optimizedNetworks = await this.neuralOptimizer.optimizeNetworks(agent.neuralNetworks);
const enhancedCognitive = await this.cognitiveEnhancer.enhanceCognitivePatterns(agent.cognitivePatterns);
await this.updateAgent(agentId, {
neuralNetworks: optimizedNetworks,
cognitivePatterns: enhancedCognitive,
lastOptimized: new Date().toISOString()
});
this.logger.info(`🧠 Neural networks optimized for agent ${agentId}`);
return { optimizedNetworks, enhancedCognitive };
} catch (error) {
this.logger.error('Failed to optimize neural networks:', error);
throw error;
}
}
// NEW: Cognitive enhancement system
async enhanceAgentCognition(agentId, enhancementType = 'adaptive') {
try {
const agent = await this.getAgent(agentId);
if (!agent) throw new Error('Agent not found');
const enhancedCognition = await this.cognitiveEnhancer.enhanceCognition(agent, enhancementType);
const adaptationMetrics = await this.calculateEnhancedAdaptationMetrics(agent, enhancedCognition);
await this.updateAgent(agentId, {
cognitivePatterns: enhancedCognition,
adaptationMetrics: adaptationMetrics,
lastEnhanced: new Date().toISOString()
});
this.logger.info(`🧠 Cognition enhanced for agent ${agentId}`);
return { enhancedCognition, adaptationMetrics };
} catch (error) {
this.logger.error('Failed to enhance cognition:', error);
throw error;
}
}
// NEW: Brain-computer interface simulation
async simulateBrainInterface(agentId, brainSignals) {
try {
const brainInterface = this.neuralNetworks.get('brain-interface');
const processedSignals = await brainInterface.processBrainSignals(brainSignals);
const agentResponse = await this.generateBrainInterfaceResponse(agentId, processedSignals);
this.logger.info(`🧠 Brain interface simulation completed for agent ${agentId}`);
return { processedSignals, agentResponse };
} catch (error) {
this.logger.error('Failed to simulate brain interface:', error);
throw error;
}
}
// NEW: Generate brain interface response
async generateBrainInterfaceResponse(agentId, processedSignals) {
const agent = await this.getAgent(agentId);
if (!agent) throw new Error('Agent not found');
const response = {
agentId: agentId,
responseType: 'brain-interface',
cognitiveLoad: this.calculateCognitiveLoad(processedSignals),
neuralResponse: this.generateNeuralResponse(processedSignals),
adaptationLevel: this.calculateAdaptationLevel(processedSignals),
timestamp: new Date().toISOString()
};
return response;
}
// NEW: Calculate cognitive load from brain signals
calculateCognitiveLoad(brainSignals) {
const loadFactors = {
attention: brainSignals.attention || 0,
memory: brainSignals.memory || 0,
processing: brainSignals.processing || 0,
creativity: brainSignals.creativity || 0
};
const totalLoad = Object.values(loadFactors).reduce((sum, value) => sum + value, 0);
return Math.min(totalLoad / 4, 100); // Normalize to 0-100
}
// NEW: Generate neural response
generateNeuralResponse(brainSignals) {
return {
pattern: this.analyzeNeuralPattern(brainSignals),
intensity: this.calculateNeuralIntensity(brainSignals),
frequency: this.calculateNeuralFrequency(brainSignals),
coherence: this.calculateNeuralCoherence(brainSignals)
};
}
// NEW: Analyze neural pattern
analyzeNeuralPattern(brainSignals) {
const patterns = [];
if (brainSignals.attention > 70) patterns.push('high-attention');
if (brainSignals.memory > 70) patterns.push('memory-intensive');
if (brainSignals.processing > 70) patterns.push('high-processing');
if (brainSignals.creativity > 70) patterns.push('creative-mode');
return patterns.length > 0 ? patterns : ['normal-pattern'];
}
// NEW: Calculate neural intensity
calculateNeuralIntensity(brainSignals) {
const avgIntensity = Object.values(brainSignals).reduce((sum, value) => sum + value, 0) / Object.keys(brainSignals).length;
return Math.min(avgIntensity, 100);
}
// NEW: Calculate neural frequency
calculateNeuralFrequency(brainSignals) {
// Simulate neural frequency based on signal patterns
const frequency = Object.values(brainSignals).reduce((sum, value) => sum + value, 0) / 10;
return Math.max(1, Math.min(frequency, 100));
}
// NEW: Calculate neural coherence
calculateNeuralCoherence(brainSignals) {
const values = Object.values(brainSignals);
const mean = values.reduce((sum, value) => sum + value, 0) / values.length;
const variance = values.reduce((sum, value) => sum + Math.pow(value - mean, 2), 0) / values.length;
const coherence = 100 - Math.sqrt(variance);
return Math.max(0, Math.min(coherence, 100));
}
// NEW: Calculate adaptation level
calculateAdaptationLevel(brainSignals) {
const adaptationFactors = {
flexibility: brainSignals.attention || 0,
learning: brainSignals.memory || 0,
processing: brainSignals.processing || 0,
creativity: brainSignals.creativity || 0
};
const totalAdaptation = Object.values(adaptationFactors).reduce((sum, value) => sum + value, 0);
return Math.min(totalAdaptation / 4, 100);
}
// NEW: Enhanced adaptation metrics calculation
async calculateEnhancedAdaptationMetrics(agent, enhancedCognition) {
const baseMetrics = this.calculateAdaptationMetrics(agent);
const enhancedMetrics = {
...baseMetrics,
cognitiveFlexibility: this.calculateCognitiveFlexibility(enhancedCognition),
neuralEfficiency: this.calculateNeuralEfficiency(enhancedCognition),
learningAcceleration: this.calculateLearningAcceleration(enhancedCognition),
adaptationSpeed: this.calculateAdaptationSpeed(enhancedCognition),
brainTechCompatibility: this.calculateBrainTechCompatibility(enhancedCognition)
};
return enhancedMetrics;
}
// NEW: Calculate cognitive flexibility
calculateCognitiveFlexibility(cognition) {
const flexibilityFactors = {
patternRecognition: cognition.patternRecognition || 0,
problemSolving: cognition.problemSolving || 0,
creativity: cognition.creativity || 0,
adaptability: cognition.adaptability || 0
};
const totalFlexibility = Object.values(flexibilityFactors).reduce((sum, value) => sum + value, 0);
return Math.min(totalFlexibility / 4, 100);
}
// NEW: Calculate neural efficiency
calculateNeuralEfficiency(cognition) {
const efficiencyFactors = {
processingSpeed: cognition.processingSpeed || 0,
memoryEfficiency: cognition.memoryEfficiency || 0,
energyOptimization: cognition.energyOptimization || 0,
synapticStrength: cognition.synapticStrength || 0
};
const totalEfficiency = Object.values(efficiencyFactors).reduce((sum, value) => sum + value, 0);
return Math.min(totalEfficiency / 4, 100);
}
// NEW: Calculate learning acceleration
calculateLearningAcceleration(cognition) {
const accelerationFactors = {
learningRate: cognition.learningRate || 0,
retentionRate: cognition.retentionRate || 0,
transferLearning: cognition.transferLearning || 0,
metaLearning: cognition.metaLearning || 0
};
const totalAcceleration = Object.values(accelerationFactors).reduce((sum, value) => sum + value, 0);
return Math.min(totalAcceleration / 4, 100);
}
// NEW: Calculate adaptation speed
calculateAdaptationSpeed(cognition) {
const speedFactors = {
responseTime: cognition.responseTime || 0,
adaptationRate: cognition.adaptationRate || 0,
flexibility: cognition.flexibility || 0,
resilience: cognition.resilience || 0
};
const totalSpeed = Object.values(speedFactors).reduce((sum, value) => sum + value, 0);
return Math.min(totalSpeed / 4, 100);
}
// NEW: Calculate brain tech compatibility
calculateBrainTechCompatibility(cognition) {
const compatibilityFactors = {
neuralInterface: cognition.neuralInterface || 0,
cognitiveMapping: cognition.cognitiveMapping || 0,
adaptiveLearning: cognition.adaptiveLearning || 0,
brainComputerInterface: cognition.brainComputerInterface || 0
};
const totalCompatibility = Object.values(compatibilityFactors).reduce((sum, value) => sum + value, 0);
return Math.min(totalCompatibility / 4, 100);
}
async loadTemplates() {
try {
// Load agent templates from the collection
@@ -65,7 +310,9 @@ class AgentBuilder {
brainTech = true,
neuralComplexity = 'medium',
cognitiveEnhancement = true,
adaptiveBehavior = true
adaptiveBehavior = true,
realTimeAnalytics = true,
neuralOptimization = true
} = config;
// Validate configuration
@@ -74,7 +321,7 @@ class AgentBuilder {
// Generate agent ID
const agentId = uuidv4();
// Create agent structure with brain technology
// Create agent structure with enhanced brain technology
const agent = {
id: agentId,
name,
@@ -90,37 +337,39 @@ class AgentBuilder {
neuralComplexity,
cognitiveEnhancement,
adaptiveBehavior,
realTimeAnalytics,
neuralOptimization,
brainTechVersion: this.brainTechVersion,
neuralNetworks: this.initializeAgentNeuralNetworks(config),
cognitivePatterns: this.analyzeCognitivePatterns(config),
adaptationMetrics: this.calculateAdaptationMetrics(config),
realTimeData: [],
performanceHistory: [],
optimizationHistory: [],
enhancementHistory: [],
createdAt: new Date().toISOString(),
version: '2.0.0',
version: '3.0.0',
status: 'active'
};
// Generate system prompt based on type and configuration with brain tech
// Initialize adaptive system
await this.initializeAdaptiveSystem(agent);
// Generate system prompt with brain technology
agent.systemPrompt = await this.generateSystemPrompt(agent);
// Generate tools configuration with neural enhancement
// Generate tools configuration
agent.toolsConfig = await this.generateToolsConfig(agent);
// Generate memory configuration with cognitive enhancement
if (memory) {
agent.memoryConfig = await this.generateMemoryConfig(agent);
}
// Generate memory configuration
agent.memoryConfig = await this.generateMemoryConfig(agent);
// Initialize adaptive learning system
if (adaptiveBehavior) {
agent.adaptiveSystem = await this.initializeAdaptiveSystem(agent);
}
// Save agent configuration
// Save agent
await this.saveAgent(agent);
this.logger.info(`🧠 Created brain-enhanced agent: ${name} (${agentId})`);
return agent;
this.logger.info(`🧠 Agent "${name}" created with advanced brain technology`);
return agent;
} catch (error) {
this.logger.error('Failed to create agent:', error);
throw error;

View File

@@ -0,0 +1,485 @@
const Logger = require('../utils/Logger');
class NeuralOptimizer {
constructor() {
this.logger = new Logger();
this.optimizationHistory = new Map();
this.optimizationAlgorithms = new Map();
this.performanceMetrics = new Map();
this.initializeOptimizationAlgorithms();
}
initializeOptimizationAlgorithms() {
// Initialize various neural optimization algorithms
this.optimizationAlgorithms.set('gradient-descent', this.gradientDescentOptimization.bind(this));
this.optimizationAlgorithms.set('genetic-algorithm', this.geneticAlgorithmOptimization.bind(this));
this.optimizationAlgorithms.set('reinforcement-learning', this.reinforcementLearningOptimization.bind(this));
this.optimizationAlgorithms.set('adaptive-resonance', this.adaptiveResonanceOptimization.bind(this));
this.optimizationAlgorithms.set('neural-evolution', this.neuralEvolutionOptimization.bind(this));
this.logger.info(`🧠 Neural optimizer initialized with ${this.optimizationAlgorithms.size} algorithms`);
}
async optimizeNetworks(neuralNetworks, optimizationType = 'adaptive') {
try {
this.logger.info(`🧠 Starting neural network optimization with type: ${optimizationType}`);
const optimizationResults = {
timestamp: new Date().toISOString(),
optimizationType,
originalNetworks: neuralNetworks,
optimizedNetworks: {},
performanceImprovements: {},
optimizationMetrics: {}
};
// Optimize each neural network
for (const [networkName, network] of Object.entries(neuralNetworks)) {
const optimizedNetwork = await this.optimizeNetwork(network, optimizationType);
const performanceImprovement = this.calculatePerformanceImprovement(network, optimizedNetwork);
optimizationResults.optimizedNetworks[networkName] = optimizedNetwork;
optimizationResults.performanceImprovements[networkName] = performanceImprovement;
}
// Calculate overall optimization metrics
optimizationResults.optimizationMetrics = this.calculateOptimizationMetrics(optimizationResults);
// Store optimization history
this.storeOptimizationHistory(optimizationResults);
this.logger.info(`🧠 Neural network optimization completed`);
return optimizationResults.optimizedNetworks;
} catch (error) {
this.logger.error('Failed to optimize neural networks:', error);
throw error;
}
}
async optimizeNetwork(network, optimizationType) {
const algorithm = this.optimizationAlgorithms.get(optimizationType) || this.optimizationAlgorithms.get('adaptive');
return await algorithm(network);
}
async gradientDescentOptimization(network) {
// Simulate gradient descent optimization
const optimizedNetwork = {
...network,
layers: network.layers.map(layer => ({
...layer,
weights: this.optimizeWeights(layer.weights, 'gradient-descent'),
bias: this.optimizeBias(layer.bias, 'gradient-descent'),
activation: this.optimizeActivation(layer.activation)
})),
learningRate: this.optimizeLearningRate(network.learningRate),
momentum: this.optimizeMomentum(network.momentum),
optimizationType: 'gradient-descent'
};
return optimizedNetwork;
}
async geneticAlgorithmOptimization(network) {
// Simulate genetic algorithm optimization
const optimizedNetwork = {
...network,
layers: network.layers.map(layer => ({
...layer,
weights: this.optimizeWeights(layer.weights, 'genetic'),
bias: this.optimizeBias(layer.bias, 'genetic'),
activation: this.optimizeActivation(layer.activation)
})),
population: this.generatePopulation(network),
fitness: this.calculateFitness(network),
optimizationType: 'genetic-algorithm'
};
return optimizedNetwork;
}
async reinforcementLearningOptimization(network) {
// Simulate reinforcement learning optimization
const optimizedNetwork = {
...network,
layers: network.layers.map(layer => ({
...layer,
weights: this.optimizeWeights(layer.weights, 'reinforcement'),
bias: this.optimizeBias(layer.bias, 'reinforcement'),
activation: this.optimizeActivation(layer.activation)
})),
policy: this.optimizePolicy(network),
valueFunction: this.optimizeValueFunction(network),
optimizationType: 'reinforcement-learning'
};
return optimizedNetwork;
}
async adaptiveResonanceOptimization(network) {
// Simulate adaptive resonance theory optimization
const optimizedNetwork = {
...network,
layers: network.layers.map(layer => ({
...layer,
weights: this.optimizeWeights(layer.weights, 'adaptive-resonance'),
bias: this.optimizeBias(layer.bias, 'adaptive-resonance'),
activation: this.optimizeActivation(layer.activation)
})),
vigilance: this.optimizeVigilance(network),
resonance: this.optimizeResonance(network),
optimizationType: 'adaptive-resonance'
};
return optimizedNetwork;
}
async neuralEvolutionOptimization(network) {
// Simulate neural evolution optimization
const optimizedNetwork = {
...network,
layers: network.layers.map(layer => ({
...layer,
weights: this.optimizeWeights(layer.weights, 'neural-evolution'),
bias: this.optimizeBias(layer.bias, 'neural-evolution'),
activation: this.optimizeActivation(layer.activation)
})),
evolutionRate: this.optimizeEvolutionRate(network),
mutationRate: this.optimizeMutationRate(network),
optimizationType: 'neural-evolution'
};
return optimizedNetwork;
}
optimizeWeights(weights, algorithm) {
// Simulate weight optimization based on algorithm
const optimizationFactors = {
'gradient-descent': 0.95,
'genetic': 0.98,
'reinforcement': 0.97,
'adaptive-resonance': 0.96,
'neural-evolution': 0.99
};
const factor = optimizationFactors[algorithm] || 0.95;
return weights.map(weight => weight * factor);
}
optimizeBias(bias, algorithm) {
// Simulate bias optimization
const optimizationFactors = {
'gradient-descent': 0.9,
'genetic': 0.95,
'reinforcement': 0.92,
'adaptive-resonance': 0.94,
'neural-evolution': 0.96
};
const factor = optimizationFactors[algorithm] || 0.9;
return bias * factor;
}
optimizeActivation(activation) {
// Optimize activation function parameters
return {
...activation,
threshold: activation.threshold * 0.95,
slope: activation.slope * 1.05
};
}
optimizeLearningRate(learningRate) {
return Math.min(learningRate * 1.1, 0.1);
}
optimizeMomentum(momentum) {
return Math.min(momentum * 1.05, 0.9);
}
generatePopulation(network) {
// Generate population for genetic algorithm
const populationSize = 50;
const population = [];
for (let i = 0; i < populationSize; i++) {
population.push({
id: i,
network: this.mutateNetwork(network),
fitness: 0
});
}
return population;
}
mutateNetwork(network) {
// Create a mutated version of the network
return {
...network,
layers: network.layers.map(layer => ({
...layer,
weights: layer.weights.map(weight => weight * (0.9 + Math.random() * 0.2)),
bias: layer.bias * (0.9 + Math.random() * 0.2)
}))
};
}
calculateFitness(network) {
// Calculate fitness score for genetic algorithm
const complexity = network.layers.length;
const efficiency = this.calculateNetworkEfficiency(network);
const accuracy = this.calculateNetworkAccuracy(network);
return (complexity * 0.2 + efficiency * 0.4 + accuracy * 0.4);
}
calculateNetworkEfficiency(network) {
// Calculate network efficiency
const totalWeights = network.layers.reduce((sum, layer) => sum + layer.weights.length, 0);
const activeWeights = network.layers.reduce((sum, layer) =>
sum + layer.weights.filter(w => Math.abs(w) > 0.01).length, 0
);
return activeWeights / totalWeights;
}
calculateNetworkAccuracy(network) {
// Simulate network accuracy calculation
return 0.85 + Math.random() * 0.1;
}
optimizePolicy(network) {
// Optimize policy for reinforcement learning
return {
epsilon: Math.max(0.01, network.policy?.epsilon * 0.95 || 0.1),
gamma: Math.min(0.99, network.policy?.gamma * 1.02 || 0.9),
alpha: Math.min(0.1, network.policy?.alpha * 1.05 || 0.01)
};
}
optimizeValueFunction(network) {
// Optimize value function for reinforcement learning
return {
discount: Math.min(0.99, network.valueFunction?.discount * 1.01 || 0.9),
learningRate: Math.min(0.1, network.valueFunction?.learningRate * 1.1 || 0.01)
};
}
optimizeVigilance(network) {
// Optimize vigilance parameter for adaptive resonance
return Math.min(0.9, network.vigilance * 1.05 || 0.7);
}
optimizeResonance(network) {
// Optimize resonance parameter for adaptive resonance
return Math.min(0.95, network.resonance * 1.02 || 0.8);
}
optimizeEvolutionRate(network) {
// Optimize evolution rate for neural evolution
return Math.min(0.1, network.evolutionRate * 1.1 || 0.01);
}
optimizeMutationRate(network) {
// Optimize mutation rate for neural evolution
return Math.min(0.1, network.mutationRate * 1.05 || 0.05);
}
calculatePerformanceImprovement(originalNetwork, optimizedNetwork) {
const originalMetrics = this.calculateNetworkMetrics(originalNetwork);
const optimizedMetrics = this.calculateNetworkMetrics(optimizedNetwork);
return {
efficiency: (optimizedMetrics.efficiency - originalMetrics.efficiency) / originalMetrics.efficiency,
accuracy: (optimizedMetrics.accuracy - originalMetrics.accuracy) / originalMetrics.accuracy,
speed: (optimizedMetrics.speed - originalMetrics.speed) / originalMetrics.speed,
overall: this.calculateOverallImprovement(originalMetrics, optimizedMetrics)
};
}
calculateNetworkMetrics(network) {
return {
efficiency: this.calculateNetworkEfficiency(network),
accuracy: this.calculateNetworkAccuracy(network),
speed: this.calculateNetworkSpeed(network),
complexity: network.layers.length
};
}
calculateNetworkSpeed(network) {
// Simulate network speed calculation
const totalOperations = network.layers.reduce((sum, layer) =>
sum + layer.weights.length * layer.neurons, 0
);
return 1 / (1 + totalOperations / 1000); // Normalize to 0-1
}
calculateOverallImprovement(originalMetrics, optimizedMetrics) {
const weights = {
efficiency: 0.3,
accuracy: 0.4,
speed: 0.3
};
const efficiencyImprovement = (optimizedMetrics.efficiency - originalMetrics.efficiency) / originalMetrics.efficiency;
const accuracyImprovement = (optimizedMetrics.accuracy - originalMetrics.accuracy) / originalMetrics.accuracy;
const speedImprovement = (optimizedMetrics.speed - originalMetrics.speed) / originalMetrics.speed;
return (
efficiencyImprovement * weights.efficiency +
accuracyImprovement * weights.accuracy +
speedImprovement * weights.speed
);
}
calculateOptimizationMetrics(optimizationResults) {
const improvements = Object.values(optimizationResults.performanceImprovements);
return {
averageImprovement: improvements.reduce((sum, imp) => sum + imp.overall, 0) / improvements.length,
maxImprovement: Math.max(...improvements.map(imp => imp.overall)),
minImprovement: Math.min(...improvements.map(imp => imp.overall)),
optimizationSuccess: improvements.filter(imp => imp.overall > 0).length / improvements.length
};
}
storeOptimizationHistory(optimizationResults) {
const historyKey = `${optimizationResults.optimizationType}-${Date.now()}`;
this.optimizationHistory.set(historyKey, optimizationResults);
// Keep only last 100 optimization histories
if (this.optimizationHistory.size > 100) {
const keys = Array.from(this.optimizationHistory.keys());
const oldestKey = keys[0];
this.optimizationHistory.delete(oldestKey);
}
}
async optimizeBasedOnPerformance(agentId, performanceData) {
try {
this.logger.info(`🧠 Optimizing neural networks based on performance for agent ${agentId}`);
// Store performance data
if (!this.performanceMetrics.has(agentId)) {
this.performanceMetrics.set(agentId, []);
}
this.performanceMetrics.get(agentId).push(performanceData);
// Analyze performance patterns
const performancePatterns = this.analyzePerformancePatterns(agentId);
// Determine optimization strategy
const optimizationStrategy = this.determineOptimizationStrategy(performancePatterns);
// Apply optimization
const optimizationResult = await this.applyPerformanceBasedOptimization(agentId, optimizationStrategy);
this.logger.info(`🧠 Performance-based optimization completed for agent ${agentId}`);
return optimizationResult;
} catch (error) {
this.logger.error('Failed to optimize based on performance:', error);
throw error;
}
}
analyzePerformancePatterns(agentId) {
const performanceData = this.performanceMetrics.get(agentId) || [];
if (performanceData.length === 0) return {};
const patterns = {
responseTimeTrend: this.calculateTrend(performanceData.map(d => d.responseTime)),
accuracyTrend: this.calculateTrend(performanceData.map(d => d.accuracy)),
efficiencyTrend: this.calculateTrend(performanceData.map(d => d.efficiency)),
adaptationTrend: this.calculateTrend(performanceData.map(d => d.adaptation))
};
return patterns;
}
calculateTrend(values) {
if (values.length < 2) return 'stable';
const firstHalf = values.slice(0, Math.floor(values.length / 2));
const secondHalf = values.slice(Math.floor(values.length / 2));
const firstAvg = firstHalf.reduce((sum, val) => sum + val, 0) / firstHalf.length;
const secondAvg = secondHalf.reduce((sum, val) => sum + val, 0) / secondHalf.length;
const difference = secondAvg - firstAvg;
const threshold = 0.05;
if (difference > threshold) return 'improving';
if (difference < -threshold) return 'declining';
return 'stable';
}
determineOptimizationStrategy(performancePatterns) {
const strategy = {
type: 'adaptive',
focus: [],
intensity: 'medium'
};
if (performancePatterns.responseTimeTrend === 'declining') {
strategy.focus.push('speed-optimization');
strategy.intensity = 'high';
}
if (performancePatterns.accuracyTrend === 'declining') {
strategy.focus.push('accuracy-optimization');
strategy.intensity = 'high';
}
if (performancePatterns.efficiencyTrend === 'declining') {
strategy.focus.push('efficiency-optimization');
}
if (performancePatterns.adaptationTrend === 'declining') {
strategy.focus.push('adaptation-optimization');
}
if (strategy.focus.length === 0) {
strategy.focus.push('general-optimization');
strategy.intensity = 'low';
}
return strategy;
}
async applyPerformanceBasedOptimization(agentId, strategy) {
// Apply optimization based on performance strategy
const optimizationResult = {
agentId,
strategy,
timestamp: new Date().toISOString(),
optimizations: []
};
for (const focus of strategy.focus) {
const optimization = await this.applyFocusOptimization(focus, strategy.intensity);
optimizationResult.optimizations.push(optimization);
}
return optimizationResult;
}
async applyFocusOptimization(focus, intensity) {
const optimizationFactors = {
'low': 0.95,
'medium': 0.9,
'high': 0.85
};
const factor = optimizationFactors[intensity] || 0.9;
return {
focus,
intensity,
factor,
description: `Applied ${focus} optimization with ${intensity} intensity`
};
}
}
module.exports = NeuralOptimizer;

View File

@@ -0,0 +1,408 @@
const Logger = require('../utils/Logger');
class RealTimeAnalytics {
constructor() {
this.logger = new Logger();
this.performanceData = new Map();
this.analyticsHistory = [];
this.realTimeMetrics = new Map();
this.performanceThresholds = {
responseTime: 1000, // ms
accuracy: 0.8, // 80%
efficiency: 0.7, // 70%
adaptation: 0.6 // 60%
};
}
async trackPerformance(agentId, performanceData) {
try {
const timestamp = new Date().toISOString();
const enhancedData = {
...performanceData,
timestamp,
agentId,
metrics: this.calculatePerformanceMetrics(performanceData),
insights: this.generatePerformanceInsights(performanceData),
recommendations: this.generatePerformanceRecommendations(performanceData)
};
// Store performance data
if (!this.performanceData.has(agentId)) {
this.performanceData.set(agentId, []);
}
this.performanceData.get(agentId).push(enhancedData);
// Update real-time metrics
this.updateRealTimeMetrics(agentId, enhancedData);
// Store in analytics history
this.analyticsHistory.push(enhancedData);
// Keep only last 1000 entries for performance
if (this.analyticsHistory.length > 1000) {
this.analyticsHistory = this.analyticsHistory.slice(-1000);
}
this.logger.info(`📊 Performance tracked for agent ${agentId}`);
return enhancedData;
} catch (error) {
this.logger.error('Failed to track performance:', error);
throw error;
}
}
calculatePerformanceMetrics(performanceData) {
const metrics = {
responseTime: this.calculateResponseTime(performanceData),
accuracy: this.calculateAccuracy(performanceData),
efficiency: this.calculateEfficiency(performanceData),
adaptation: this.calculateAdaptation(performanceData),
cognitiveLoad: this.calculateCognitiveLoad(performanceData),
neuralEfficiency: this.calculateNeuralEfficiency(performanceData)
};
return metrics;
}
calculateResponseTime(performanceData) {
const responseTime = performanceData.responseTime || 0;
return Math.min(responseTime, 10000); // Cap at 10 seconds
}
calculateAccuracy(performanceData) {
const accuracy = performanceData.accuracy || 0;
return Math.max(0, Math.min(accuracy, 1)); // Normalize to 0-1
}
calculateEfficiency(performanceData) {
const efficiency = performanceData.efficiency || 0;
return Math.max(0, Math.min(efficiency, 1)); // Normalize to 0-1
}
calculateAdaptation(performanceData) {
const adaptation = performanceData.adaptation || 0;
return Math.max(0, Math.min(adaptation, 1)); // Normalize to 0-1
}
calculateCognitiveLoad(performanceData) {
const cognitiveLoad = performanceData.cognitiveLoad || 0;
return Math.max(0, Math.min(cognitiveLoad, 100)); // Normalize to 0-100
}
calculateNeuralEfficiency(performanceData) {
const neuralEfficiency = performanceData.neuralEfficiency || 0;
return Math.max(0, Math.min(neuralEfficiency, 100)); // Normalize to 0-100
}
generatePerformanceInsights(performanceData) {
const insights = [];
const metrics = this.calculatePerformanceMetrics(performanceData);
if (metrics.responseTime > this.performanceThresholds.responseTime) {
insights.push('Response time exceeds optimal threshold - consider optimization');
}
if (metrics.accuracy < this.performanceThresholds.accuracy) {
insights.push('Accuracy below target threshold - review decision-making patterns');
}
if (metrics.efficiency < this.performanceThresholds.efficiency) {
insights.push('Efficiency below optimal level - consider resource optimization');
}
if (metrics.adaptation < this.performanceThresholds.adaptation) {
insights.push('Adaptation rate below target - enhance learning mechanisms');
}
if (metrics.cognitiveLoad > 80) {
insights.push('High cognitive load detected - consider load balancing');
}
if (metrics.neuralEfficiency < 60) {
insights.push('Neural efficiency below optimal - review network architecture');
}
return insights;
}
generatePerformanceRecommendations(performanceData) {
const recommendations = [];
const metrics = this.calculatePerformanceMetrics(performanceData);
if (metrics.responseTime > this.performanceThresholds.responseTime) {
recommendations.push('Implement response time optimization algorithms');
recommendations.push('Consider parallel processing for complex tasks');
}
if (metrics.accuracy < this.performanceThresholds.accuracy) {
recommendations.push('Enhance decision-making algorithms');
recommendations.push('Implement additional validation layers');
}
if (metrics.efficiency < this.performanceThresholds.efficiency) {
recommendations.push('Optimize resource allocation');
recommendations.push('Implement caching mechanisms');
}
if (metrics.adaptation < this.performanceThresholds.adaptation) {
recommendations.push('Enhance adaptive learning algorithms');
recommendations.push('Implement real-time feedback loops');
}
if (metrics.cognitiveLoad > 80) {
recommendations.push('Implement cognitive load balancing');
recommendations.push('Add task prioritization mechanisms');
}
if (metrics.neuralEfficiency < 60) {
recommendations.push('Optimize neural network architecture');
recommendations.push('Implement neural efficiency monitoring');
}
return recommendations;
}
updateRealTimeMetrics(agentId, enhancedData) {
const currentMetrics = this.realTimeMetrics.get(agentId) || {};
const newMetrics = {
...currentMetrics,
lastUpdate: enhancedData.timestamp,
performanceScore: this.calculatePerformanceScore(enhancedData.metrics),
trend: this.calculatePerformanceTrend(agentId, enhancedData),
alerts: this.generatePerformanceAlerts(enhancedData.metrics)
};
this.realTimeMetrics.set(agentId, newMetrics);
}
calculatePerformanceScore(metrics) {
const weights = {
responseTime: 0.2,
accuracy: 0.3,
efficiency: 0.2,
adaptation: 0.15,
cognitiveLoad: 0.1,
neuralEfficiency: 0.05
};
const normalizedResponseTime = Math.max(0, 1 - (metrics.responseTime / 10000));
const score = (
normalizedResponseTime * weights.responseTime +
metrics.accuracy * weights.accuracy +
metrics.efficiency * weights.efficiency +
metrics.adaptation * weights.adaptation +
(1 - metrics.cognitiveLoad / 100) * weights.cognitiveLoad +
(metrics.neuralEfficiency / 100) * weights.neuralEfficiency
);
return Math.max(0, Math.min(score, 1));
}
calculatePerformanceTrend(agentId, currentData) {
const agentHistory = this.performanceData.get(agentId) || [];
if (agentHistory.length < 2) return 'stable';
const recentScores = agentHistory.slice(-5).map(data =>
this.calculatePerformanceScore(data.metrics)
);
const trend = this.calculateTrendFromScores(recentScores);
return trend;
}
calculateTrendFromScores(scores) {
if (scores.length < 2) return 'stable';
const firstHalf = scores.slice(0, Math.floor(scores.length / 2));
const secondHalf = scores.slice(Math.floor(scores.length / 2));
const firstAvg = firstHalf.reduce((sum, score) => sum + score, 0) / firstHalf.length;
const secondAvg = secondHalf.reduce((sum, score) => sum + score, 0) / secondHalf.length;
const difference = secondAvg - firstAvg;
const threshold = 0.05;
if (difference > threshold) return 'improving';
if (difference < -threshold) return 'declining';
return 'stable';
}
generatePerformanceAlerts(metrics) {
const alerts = [];
if (metrics.responseTime > this.performanceThresholds.responseTime) {
alerts.push({
type: 'warning',
message: 'Response time exceeds threshold',
metric: 'responseTime',
value: metrics.responseTime
});
}
if (metrics.accuracy < this.performanceThresholds.accuracy) {
alerts.push({
type: 'error',
message: 'Accuracy below threshold',
metric: 'accuracy',
value: metrics.accuracy
});
}
if (metrics.cognitiveLoad > 90) {
alerts.push({
type: 'critical',
message: 'Critical cognitive load detected',
metric: 'cognitiveLoad',
value: metrics.cognitiveLoad
});
}
return alerts;
}
async getAgentAnalytics(agentId, timeRange = '24h') {
try {
const agentData = this.performanceData.get(agentId) || [];
const filteredData = this.filterDataByTimeRange(agentData, timeRange);
const analytics = {
agentId,
timeRange,
dataPoints: filteredData.length,
averageMetrics: this.calculateAverageMetrics(filteredData),
trends: this.calculateTrends(filteredData),
insights: this.generateAnalyticsInsights(filteredData),
recommendations: this.generateAnalyticsRecommendations(filteredData)
};
return analytics;
} catch (error) {
this.logger.error('Failed to get agent analytics:', error);
throw error;
}
}
filterDataByTimeRange(data, timeRange) {
const now = new Date();
const timeRanges = {
'1h': 60 * 60 * 1000,
'6h': 6 * 60 * 60 * 1000,
'24h': 24 * 60 * 60 * 1000,
'7d': 7 * 24 * 60 * 60 * 1000,
'30d': 30 * 24 * 60 * 60 * 1000
};
const rangeMs = timeRanges[timeRange] || timeRanges['24h'];
const cutoffTime = new Date(now.getTime() - rangeMs);
return data.filter(entry => new Date(entry.timestamp) >= cutoffTime);
}
calculateAverageMetrics(data) {
if (data.length === 0) return {};
const metrics = ['responseTime', 'accuracy', 'efficiency', 'adaptation', 'cognitiveLoad', 'neuralEfficiency'];
const averages = {};
metrics.forEach(metric => {
const values = data.map(entry => entry.metrics[metric]).filter(val => val !== undefined);
if (values.length > 0) {
averages[metric] = values.reduce((sum, val) => sum + val, 0) / values.length;
}
});
return averages;
}
calculateTrends(data) {
if (data.length < 2) return {};
const trends = {};
const metrics = ['responseTime', 'accuracy', 'efficiency', 'adaptation', 'cognitiveLoad', 'neuralEfficiency'];
metrics.forEach(metric => {
const values = data.map(entry => entry.metrics[metric]).filter(val => val !== undefined);
if (values.length >= 2) {
trends[metric] = this.calculateTrendFromScores(values);
}
});
return trends;
}
generateAnalyticsInsights(data) {
const insights = [];
const averageMetrics = this.calculateAverageMetrics(data);
if (averageMetrics.responseTime > this.performanceThresholds.responseTime) {
insights.push('Consistently high response times detected');
}
if (averageMetrics.accuracy < this.performanceThresholds.accuracy) {
insights.push('Accuracy consistently below target threshold');
}
if (averageMetrics.cognitiveLoad > 80) {
insights.push('Sustained high cognitive load observed');
}
return insights;
}
generateAnalyticsRecommendations(data) {
const recommendations = [];
const averageMetrics = this.calculateAverageMetrics(data);
if (averageMetrics.responseTime > this.performanceThresholds.responseTime) {
recommendations.push('Implement response time optimization');
recommendations.push('Consider parallel processing architecture');
}
if (averageMetrics.accuracy < this.performanceThresholds.accuracy) {
recommendations.push('Enhance decision-making algorithms');
recommendations.push('Implement additional validation layers');
}
if (averageMetrics.cognitiveLoad > 80) {
recommendations.push('Implement cognitive load balancing');
recommendations.push('Add task prioritization mechanisms');
}
return recommendations;
}
async exportAnalytics(agentId, format = 'json') {
try {
const analytics = await this.getAgentAnalytics(agentId, '30d');
if (format === 'json') {
return JSON.stringify(analytics, null, 2);
} else if (format === 'csv') {
return this.convertToCSV(analytics);
} else {
throw new Error(`Unsupported format: ${format}`);
}
} catch (error) {
this.logger.error('Failed to export analytics:', error);
throw error;
}
}
convertToCSV(analytics) {
const headers = ['timestamp', 'responseTime', 'accuracy', 'efficiency', 'adaptation', 'cognitiveLoad', 'neuralEfficiency'];
const rows = analytics.dataPoints.map(data => [
data.timestamp,
data.metrics.responseTime,
data.metrics.accuracy,
data.metrics.efficiency,
data.metrics.adaptation,
data.metrics.cognitiveLoad,
data.metrics.neuralEfficiency
]);
const csvContent = [headers.join(','), ...rows.map(row => row.join(','))].join('\n');
return csvContent;
}
}
module.exports = RealTimeAnalytics;