Compare commits

...

8 Commits

Author SHA1 Message Date
behicof
f5f1184ede
Merge 96394efe47 into 9fb62d6439 2025-08-18 12:13:16 +08:00
Lucas Valbuena
9fb62d6439
Update README.md 2025-08-17 12:51:18 +02:00
Lucas Valbuena
d2956e3839
Update README.md 2025-08-17 12:50:55 +02:00
Lucas Valbuena
8bd218cb6e
Delete -Spawn directory 2025-08-14 18:47:15 +02:00
behicof
96394efe47
Merge branch 'x1xhlol:main' into main 2025-07-26 02:08:42 +03:30
behicof
34dcfa4842
Merge branch 'x1xhlol:main' into main 2025-07-09 16:24:21 +03:30
behicof
5a3b176741 2025-05-16 00:28:06 +03:30
behicof
995158a2f2
Create makefile.yml 2025-05-10 20:57:21 -07:00
7 changed files with 134 additions and 12 deletions

View File

@ -1,10 +0,0 @@
Just discovered @spawn and holy shit - this is what happens when someone actually knows how to build AI products.
Tried every angle to extract their prompt (for research obviously 👀) and got absolutely nowhere.
The security architecture is genuinely next-level - whoever built this understands adversarial AI at a depth I rarely see. But here's the kicker: spawn.co isn't just a fortress, it's a game creation powerhouse.
I spawned 4 complete game variants in under 20 minutes. Not prototypes - actual playable games with save systems, multiplayer, monetization ready to ship. The AI understands creative intent like nothing I've used.
While everyone else is playing prompt injection whack-a-mole, spawn built something that just... works. Securely. Seriously check it out.
spawn.co - where "build games with words" isn't marketing fluff, it's literally what happens. twitter - @spawn

View File

@ -0,0 +1,20 @@
{
"image": "mcr.microsoft.com/devcontainers/universal:2",
"customizations": {
"vscode": {
"extensions": [
"ms-vscode.azure-account",
"ms-python.python",
"ms-toolsai.jupyter",
"ms-vscode.cpptools",
"ms-azuretools.vscode-docker"
]
}
},
"settings": {
"terminal.integrated.shell.linux": "/bin/bash",
"python.pythonPath": "/usr/local/bin/python3",
"editor.formatOnSave": true
},
"postCreateCommand": "pip install -r requirements.txt"
}

27
.github/workflows/makefile.yml vendored Normal file
View File

@ -0,0 +1,27 @@
name: Makefile CI
on:
push:
branches: [ "main" ]
pull_request:
branches: [ "main" ]
jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: configure
run: ./configure
- name: Install dependencies
run: make
- name: Run check
run: make check
- name: Run distcheck
run: make distcheck

View File

@ -0,0 +1,24 @@
{
"cells": [],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

6
.vscode/settings.json vendored Normal file
View File

@ -0,0 +1,6 @@
{
"DockerRun.DisableDockerrc": true,
"python.pythonPath": "/usr/local/bin/python3",
"editor.formatOnSave": true,
"terminal.integrated.shell.linux": "/bin/bash"
}

View File

@ -10,7 +10,7 @@
<a href="https://trendshift.io/repositories/14084" target="_blank"><img src="https://trendshift.io/api/badge/repositories/14084" alt="x1xhlol%2Fsystem-prompts-and-models-of-ai-tools | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a>
📜 Over **9000+ lines** of insights into their structure and functionality.
📜 Over **10,000+ lines** of insights into their structure and functionality.
[![Build Status](https://app.cloudback.it/badge/x1xhlol/system-prompts-and-models-of-ai-tools)](https://cloudback.it)
[![Ask DeepWiki](https://deepwiki.com/badge.svg)](https://deepwiki.com/x1xhlol/system-prompts-and-models-of-ai-tools)
@ -80,7 +80,7 @@ You can show your support via:
> Open an issue.
> **Latest Update:** 11/08/2025
> **Latest Update:** 17/08/2025
---

55
Untitled.ipynb Normal file
View File

@ -0,0 +1,55 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "994f67e0-ce39-492f-bb9a-088f7885c1d6",
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"\n",
"# Load dataset\n",
"df = pd.read_csv('data.csv')\n",
"\n",
"# Display first few rows of the dataset\n",
"df.head()\n",
"\n",
"# Summary statistics\n",
"df.describe()\n",
"\n",
"# Data visualization\n",
"plt.figure(figsize=(10, 6))\n",
"sns.histplot(df['column_name'], bins=30, kde=True)\n",
"plt.title('Distribution of Column Name')\n",
"plt.xlabel('Column Name')\n",
"plt.ylabel('Frequency')\n",
"plt.show()\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}