#!/usr/bin/env python3 """ Revolutionary AI Agent System - The Most Advanced AI Agent with Voice Actor Capabilities Integrates all workflow capabilities, AI tools, and agent frameworks with cutting-edge voice synthesis """ import os import json import asyncio import sqlite3 import requests import subprocess import threading import queue import time from datetime import datetime from typing import Dict, List, Any, Optional, Union, Callable from pathlib import Path import uvicorn from fastapi import FastAPI, HTTPException, BackgroundTasks, Request, WebSocket, WebSocketDisconnect from fastapi.responses import HTMLResponse, JSONResponse, StreamingResponse from fastapi.staticfiles import StaticFiles from fastapi.middleware.cors import CORSMiddleware from pydantic import BaseModel, Field import aiofiles import aiofiles.os from jinja2 import Environment, FileSystemLoader import openai import anthropic import replicate from dataclasses import dataclass import logging import numpy as np import soundfile as sf import librosa from scipy import signal import cv2 import mediapipe as mp from transformers import pipeline, AutoTokenizer, AutoModel import torch import torchaudio import whisper import edge_tts import pyttsx3 import speech_recognition as sr from moviepy.editor import VideoFileClip, AudioFileClip, CompositeVideoClip import matplotlib.pyplot as plt import seaborn as sns from PIL import Image, ImageDraw, ImageFont import io import base64 # Configure logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Initialize FastAPI app app = FastAPI( title="Revolutionary AI Agent System", description="The most advanced AI agent with voice actor capabilities", version="4.0.0" ) # Add CORS middleware app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) # Configuration CONFIG = { "openai_api_key": os.getenv("OPENAI_API_KEY"), "anthropic_api_key": os.getenv("ANTHROPIC_API_KEY"), "replicate_api_key": os.getenv("REPLICATE_API_KEY"), "elevenlabs_api_key": os.getenv("ELEVENLABS_API_KEY"), "database_path": "revolutionary_agent.db", "workflows_dir": "n8n-workflows/workflows", "tools_dir": ".", "max_concurrent_tasks": 20, "default_model": "gpt-4", "claude_model": "claude-3-sonnet-20240229", "voice_model": "eleven_multilingual_v2", "audio_sample_rate": 44100, "video_fps": 30, "max_audio_duration": 300, # 5 minutes "max_video_duration": 600, # 10 minutes } # Data Models class AgentTask(BaseModel): task_id: str task_type: str description: str parameters: Dict[str, Any] = {} priority: int = Field(default=1, ge=1, le=10) status: str = "pending" created_at: datetime = Field(default_factory=datetime.now) updated_at: datetime = Field(default_factory=datetime.now) class AgentResponse(BaseModel): task_id: str status: str result: Optional[Dict[str, Any]] = None error: Optional[str] = None execution_time: float = 0.0 class VoiceActorRequest(BaseModel): text: str voice_id: str = "pNInz6obpgDQGcFmaJgB" # Adam voice model_id: str = "eleven_multilingual_v2" voice_settings: Dict[str, Any] = { "stability": 0.5, "similarity_boost": 0.75, "style": 0.0, "use_speaker_boost": True } class VideoGenerationRequest(BaseModel): prompt: str duration: int = 10 resolution: str = "1920x1080" fps: int = 30 style: str = "cinematic" voice_over: Optional[str] = None @dataclass class AgentCapability: name: str description: str category: str tools: List[str] models: List[str] workflows: List[str] voice_enabled: bool = False class RevolutionaryAIAgent: """Revolutionary AI Agent with advanced voice actor capabilities""" def __init__(self): self.capabilities = self._load_capabilities() self.active_tasks = {} self.workflow_cache = {} self.tool_registry = self._load_tools() self.model_registry = self._load_models() self.voice_registry = self._load_voice_models() self.memory_system = self._init_memory_system() self.planning_system = self._init_planning_system() self.voice_processor = self._init_voice_processor() self.video_processor = self._init_video_processor() self.audio_queue = queue.Queue() self.video_queue = queue.Queue() def _load_capabilities(self) -> Dict[str, AgentCapability]: """Load all agent capabilities with voice actor features""" capabilities = { "voice_acting": AgentCapability( name="Voice Acting", description="Professional voice acting with emotional expression and character voices", category="multimodal", tools=["voice_synthesis", "emotion_analysis", "character_voice", "audio_processing"], models=["elevenlabs", "openai_tts", "whisper", "claude_3"], workflows=["voice_generation", "character_development", "script_analysis"], voice_enabled=True ), "video_production": AgentCapability( name="Video Production", description="Create professional videos with AI-generated content and voice-overs", category="multimodal", tools=["video_generation", "scene_composition", "audio_sync", "visual_effects"], models=["stable_diffusion", "runway_ml", "dall_e_3", "midjourney"], workflows=["video_script", "scene_planning", "post_production"], voice_enabled=True ), "character_development": AgentCapability( name="Character Development", description="Create and develop complex AI characters with unique personalities", category="ai_development", tools=["personality_engine", "memory_system", "behavior_modeling"], models=["gpt-4", "claude-3-sonnet", "anthropic_character"], workflows=["character_creation", "personality_training", "interaction_modeling"], voice_enabled=True ), "advanced_code_generation": AgentCapability( name="Advanced Code Generation", description="Generate complex, production-ready code with voice explanations", category="development", tools=["codebase_search", "file_read", "file_write", "run_terminal_cmd", "voice_code_explanation"], models=["gpt-4", "claude-3-sonnet", "codellama", "github_copilot"], workflows=["code_review", "bug_fix", "feature_implementation", "architecture_design"], voice_enabled=True ), "workflow_orchestration": AgentCapability( name="Workflow Orchestration", description="Orchestrate complex workflows with voice-guided execution", category="automation", tools=["workflow_executor", "api_integration", "data_processing", "voice_guidance"], models=["gpt-4", "claude-3-sonnet"], workflows=["data_pipeline", "api_automation", "notification_system", "voice_automation"], voice_enabled=True ), "multimodal_ai_analysis": AgentCapability( name="Multimodal AI Analysis", description="Analyze data, generate insights, and create reports with voice narration", category="analytics", tools=["data_analysis", "visualization", "report_generation", "voice_narration"], models=["gpt-4", "claude-3-sonnet", "dall-e-3", "whisper"], workflows=["data_analysis", "report_generation", "insight_extraction", "voice_presentation"], voice_enabled=True ), "system_integration": AgentCapability( name="System Integration", description="Integrate with external APIs and services with voice feedback", category="integration", tools=["api_client", "webhook_handler", "database_connector", "voice_status"], models=["gpt-4", "claude-3-sonnet"], workflows=["api_integration", "data_sync", "service_orchestration", "voice_monitoring"], voice_enabled=True ) } return capabilities def _load_tools(self) -> Dict[str, Dict]: """Load all available tools including voice and video processing""" tools = {} # Load Cursor tools try: with open("Cursor Prompts/Agent Tools v1.0.json", "r") as f: cursor_tools = json.load(f) for tool in cursor_tools: tools[f"cursor_{tool['name']}"] = tool except FileNotFoundError: logger.warning("Cursor tools not found") # Load Manus tools try: with open("Manus Agent Tools & Prompt/tools.json", "r") as f: manus_tools = json.load(f) for tool in manus_tools: if "function" in tool: tools[f"manus_{tool['function']['name']}"] = tool except FileNotFoundError: logger.warning("Manus tools not found") # Add revolutionary tools tools.update({ "voice_synthesis": { "name": "voice_synthesis", "description": "Generate high-quality voice synthesis with emotional expression", "parameters": { "text": {"type": "string"}, "voice_id": {"type": "string"}, "emotion": {"type": "string", "enum": ["happy", "sad", "angry", "calm", "excited", "professional"]}, "speed": {"type": "number", "minimum": 0.5, "maximum": 2.0}, "pitch": {"type": "number", "minimum": -20, "maximum": 20} } }, "character_voice": { "name": "character_voice", "description": "Create and manage character voices with unique personalities", "parameters": { "character_name": {"type": "string"}, "personality": {"type": "object"}, "voice_characteristics": {"type": "object"}, "dialogue": {"type": "string"} } }, "video_generation": { "name": "video_generation", "description": "Generate professional videos with AI content and voice-overs", "parameters": { "prompt": {"type": "string"}, "duration": {"type": "integer"}, "resolution": {"type": "string"}, "style": {"type": "string"}, "voice_over": {"type": "string"} } }, "emotion_analysis": { "name": "emotion_analysis", "description": "Analyze emotional content in text, audio, and video", "parameters": { "content": {"type": "string"}, "content_type": {"type": "string", "enum": ["text", "audio", "video"]}, "analysis_depth": {"type": "string", "enum": ["basic", "detailed", "comprehensive"]} } }, "ai_model_caller": { "name": "ai_model_caller", "description": "Call various AI models for different tasks", "parameters": { "model": {"type": "string"}, "prompt": {"type": "string"}, "parameters": {"type": "object"} } }, "workflow_executor": { "name": "workflow_executor", "description": "Execute n8n workflows with voice-guided execution", "parameters": { "workflow_name": {"type": "string"}, "input_data": {"type": "object"}, "execution_mode": {"type": "string", "enum": ["sync", "async", "streaming", "voice_guided"]} } } }) return tools def _load_models(self) -> Dict[str, Dict]: """Load available AI models including voice and video models""" return { "gpt-4": { "provider": "openai", "capabilities": ["text", "code", "reasoning"], "max_tokens": 8192 }, "gpt-4-vision": { "provider": "openai", "capabilities": ["text", "image", "code", "reasoning"], "max_tokens": 4096 }, "claude-3-sonnet": { "provider": "anthropic", "capabilities": ["text", "code", "reasoning"], "max_tokens": 200000 }, "claude-3-sonnet-vision": { "provider": "anthropic", "capabilities": ["text", "image", "code", "reasoning"], "max_tokens": 200000 }, "elevenlabs": { "provider": "elevenlabs", "capabilities": ["voice_synthesis", "voice_cloning", "emotion_control"], "max_tokens": None }, "whisper": { "provider": "openai", "capabilities": ["audio_transcription", "language_detection"], "max_tokens": None }, "stable-diffusion": { "provider": "replicate", "capabilities": ["image_generation", "video_generation"], "max_tokens": None }, "runway_ml": { "provider": "runway", "capabilities": ["video_generation", "video_editing"], "max_tokens": None } } def _load_voice_models(self) -> Dict[str, Dict]: """Load available voice models and characters""" return { "eleven_multilingual_v2": { "provider": "elevenlabs", "languages": ["en", "es", "fr", "de", "it", "pt", "pl", "hi", "ja", "ko", "zh"], "emotions": ["happy", "sad", "angry", "calm", "excited", "professional"], "voices": { "adam": "pNInz6obpgDQGcFmaJgB", "bella": "EXAVITQu4vr4xnSDxMaL", "charlie": "VR6AewLTigWG4xSOukaG", "diana": "21m00Tcm4TlvDq8ikWAM", "eve": "AZnzlk1XvdvUeBnXmlld" } }, "openai_tts": { "provider": "openai", "voices": ["alloy", "echo", "fable", "onyx", "nova", "shimmer"], "formats": ["mp3", "opus", "aac", "flac"] }, "edge_tts": { "provider": "microsoft", "voices": ["en-US-JennyNeural", "en-US-GuyNeural", "en-GB-SoniaNeural"], "languages": ["en-US", "en-GB", "es-ES", "fr-FR", "de-DE"] } } def _init_memory_system(self): """Initialize advanced memory system""" return { "short_term": [], "long_term": {}, "character_memories": {}, "conversation_history": [], "task_memory": {} } def _init_planning_system(self): """Initialize advanced planning system""" return { "current_plan": None, "task_queue": [], "execution_history": [], "planning_engine": "advanced" } def _init_voice_processor(self): """Initialize voice processing capabilities""" return { "synthesis_engine": "elevenlabs", "recognition_engine": "whisper", "emotion_analyzer": "advanced", "character_voices": {}, "audio_cache": {} } def _init_video_processor(self): """Initialize video processing capabilities""" return { "generation_engine": "stable_diffusion", "editing_engine": "moviepy", "composition_engine": "advanced", "video_cache": {}, "scene_templates": {} } # Initialize the agent agent = RevolutionaryAIAgent() # API Routes @app.get("/", response_class=HTMLResponse) async def root(): """Main dashboard for the Revolutionary AI Agent""" html_content = """
The Most Advanced AI Agent with Professional Voice Actor Capabilities
Experience the revolutionary voice capabilities
Professional voice acting with emotional expression and character voices
Create professional videos with AI-generated content and voice-overs
Create and develop complex AI characters with unique personalities
Generate complex, production-ready code with voice explanations
Orchestrate complex workflows with voice-guided execution
Analyze data, generate insights, and create reports with voice narration