#!/usr/bin/env python3 """ Revolutionary AI Agent System - Simplified Version The Most Advanced AI Agent with Voice Actor Capabilities """ import os import json import asyncio import requests import numpy as np import pandas as pd from typing import Dict, List, Any, Optional import logging from dataclasses import dataclass import io import base64 from datetime import datetime from pathlib import Path from fastapi import FastAPI, HTTPException, Request from fastapi.responses import HTMLResponse, StreamingResponse, JSONResponse from fastapi.staticfiles import StaticFiles from pydantic import BaseModel import uvicorn # Configure logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Configuration CONFIG = { "openai_api_key": os.getenv("OPENAI_API_KEY", ""), "anthropic_api_key": os.getenv("ANTHROPIC_API_KEY", ""), "replicate_api_key": os.getenv("REPLICATE_API_KEY", ""), "elevenlabs_api_key": os.getenv("ELEVENLABS_API_KEY", ""), "database_path": "revolutionary_agent.db", "static_dir": Path("static"), "templates_dir": Path("templates"), "logs_dir": Path("logs"), "default_voice_id": "pNInz6obpgDQGcFmaJgB", # Adam voice "default_model": "gpt-4", "voice_enabled": True } # Create directories CONFIG["static_dir"].mkdir(exist_ok=True) CONFIG["templates_dir"].mkdir(exist_ok=True) CONFIG["logs_dir"].mkdir(exist_ok=True) # Pydantic models class AgentTask(BaseModel): task_type: str description: str parameters: Dict[str, Any] = {} voice_enabled: bool = True class AgentResponse(BaseModel): success: bool message: str data: Dict[str, Any] = {} voice_audio: Optional[str] = None class VoiceActorRequest(BaseModel): text: str voice_id: str = CONFIG["default_voice_id"] model_id: str = "eleven_multilingual_v2" voice_settings: Dict[str, Any] = { "stability": 0.5, "similarity_boost": 0.75, "style": 0.0, "use_speaker_boost": True } class VideoGenerationRequest(BaseModel): prompt: str duration: int = 10 style: str = "cinematic" voice_over: Optional[str] = None @dataclass class AgentCapability: name: str description: str tools: List[str] models: List[str] workflows: List[str] voice_enabled: bool = True class RevolutionaryAIAgent: """Revolutionary AI Agent with Voice Actor Capabilities""" def __init__(self): self.capabilities = self._load_capabilities() self.tools = self._load_tools() self.models = self._load_models() self.voice_models = self._load_voice_models() self.memory_system = self._init_memory_system() self.planning_system = self._init_planning_system() self.voice_processor = self._init_voice_processor() self.video_processor = self._init_video_processor() def _load_capabilities(self) -> Dict[str, AgentCapability]: """Load revolutionary agent capabilities""" return { "voice_acting": AgentCapability( name="Professional Voice Acting", description="Revolutionary voice synthesis with emotional expression", tools=["voice_synthesis", "character_voice", "emotion_analysis"], models=["elevenlabs", "openai_tts", "edge_tts"], workflows=["voice_generation", "character_development"], voice_enabled=True ), "video_production": AgentCapability( name="AI Video Production", description="Professional video creation with AI content", tools=["video_generation", "voice_over", "scene_composition"], models=["stable_diffusion", "runway_ml", "elevenlabs"], workflows=["content_creation", "video_editing"], voice_enabled=True ), "character_development": AgentCapability( name="Advanced Character Development", description="Complex AI characters with unique personalities", tools=["personality_engine", "memory_system", "behavior_modeling"], models=["gpt-4", "claude-3-sonnet", "anthropic_character"], workflows=["character_creation", "personality_training"], voice_enabled=True ), "code_generation": AgentCapability( name="Revolutionary Code Generation", description="Advanced code generation with voice explanations", tools=["code_generation", "architecture_design", "code_review"], models=["gpt-4", "claude-3-sonnet", "codellama"], workflows=["software_development", "code_analysis"], voice_enabled=True ), "workflow_orchestration": AgentCapability( name="Intelligent Workflow Orchestration", description="Voice-guided automation with AI decision making", tools=["workflow_executor", "decision_maker", "monitor"], models=["gpt-4", "claude-3-sonnet"], workflows=["automation", "orchestration"], voice_enabled=True ), "ai_analysis": AgentCapability( name="Multimodal AI Analysis", description="Data analysis with voice narration", tools=["data_analysis", "report_generation", "visualization"], models=["gpt-4", "claude-3-sonnet", "stable_diffusion"], workflows=["analysis_pipeline", "report_creation"], voice_enabled=True ), "multimodal_processing": AgentCapability( name="Multimodal Content Processing", description="Process text, image, audio, and video content", tools=["text_processor", "image_processor", "audio_processor", "video_processor"], models=["gpt-4", "claude-3-sonnet", "stable_diffusion", "whisper"], workflows=["content_processing", "format_conversion"], voice_enabled=True ) } def _load_tools(self) -> Dict[str, Any]: """Load revolutionary tools""" return { "voice_synthesis": { "name": "Voice Synthesis", "description": "Generate professional voice audio", "parameters": ["text", "voice_id", "emotion", "speed"] }, "character_voice": { "name": "Character Voice", "description": "Create character-specific voices", "parameters": ["character_name", "personality", "dialogue"] }, "video_generation": { "name": "Video Generation", "description": "Generate AI videos with voice-overs", "parameters": ["prompt", "duration", "style", "voice_over"] }, "emotion_analysis": { "name": "Emotion Analysis", "description": "Analyze and express emotions in voice", "parameters": ["text", "context", "intensity"] }, "ai_model_caller": { "name": "AI Model Caller", "description": "Call various AI models", "parameters": ["model", "prompt", "parameters"] }, "workflow_executor": { "name": "Workflow Executor", "description": "Execute complex workflows", "parameters": ["workflow_id", "parameters", "voice_guidance"] } } def _load_models(self) -> Dict[str, Any]: """Load available AI models""" return { "gpt-4": { "provider": "openai", "description": "Advanced reasoning and analysis", "capabilities": ["text_generation", "code_generation", "analysis"] }, "claude-3-sonnet": { "provider": "anthropic", "description": "Sophisticated reasoning and content creation", "capabilities": ["text_generation", "analysis", "content_creation"] }, "stable_diffusion": { "provider": "replicate", "description": "AI image and video generation", "capabilities": ["image_generation", "video_generation"] }, "whisper": { "provider": "openai", "description": "Speech recognition and transcription", "capabilities": ["speech_to_text", "transcription"] } } def _load_voice_models(self) -> Dict[str, Any]: """Load voice models""" return { "elevenlabs": { "voices": { "adam": {"id": "pNInz6obpgDQGcFmaJgB", "name": "Adam", "style": "Professional"}, "bella": {"id": "EXAVITQu4vr4xnSDxMaL", "name": "Bella", "style": "Friendly"}, "charlie": {"id": "VR6AewLTigWG4xSOukaG", "name": "Charlie", "style": "Serious"}, "diana": {"id": "21m00Tcm4TlvDq8ikWAM", "name": "Diana", "style": "Energetic"}, "eve": {"id": "AZnzlk1XvdvUeBnXmlld", "name": "Eve", "style": "Calm"} }, "languages": ["en", "es", "fr", "de", "it", "pt", "pl", "hi", "ja", "ko", "zh"] }, "openai_tts": { "voices": ["alloy", "echo", "fable", "onyx", "nova", "shimmer"], "languages": ["en"] }, "edge_tts": { "voices": ["en-US-JennyNeural", "en-US-GuyNeural", "en-GB-SoniaNeural"], "languages": ["en", "es", "fr", "de", "it", "pt", "ja", "ko", "zh"] } } def _init_memory_system(self) -> Dict[str, Any]: """Initialize memory system""" return { "short_term": [], "long_term": [], "character": {}, "conversation": [], "task": [] } def _init_planning_system(self) -> Dict[str, Any]: """Initialize planning system""" return { "current_plan": None, "execution_history": [], "task_queue": [] } def _init_voice_processor(self) -> Any: """Initialize voice processor""" return None # Will be implemented with available libraries def _init_video_processor(self) -> Any: """Initialize video processor""" return None # Will be implemented with available libraries async def execute_task(self, task: AgentTask) -> AgentResponse: """Execute a revolutionary task""" try: logger.info(f"Executing task: {task.task_type}") if task.task_type == "voice_synthesis": return await self._handle_voice_synthesis(task) elif task.task_type == "character_voice": return await self._handle_character_voice(task) elif task.task_type == "video_generation": return await self._handle_video_generation(task) elif task.task_type == "ai_analysis": return await self._handle_ai_analysis(task) elif task.task_type == "code_generation": return await self._handle_code_generation(task) elif task.task_type == "workflow_orchestration": return await self._handle_workflow_orchestration(task) else: return AgentResponse( success=False, message=f"Unknown task type: {task.task_type}" ) except Exception as e: logger.error(f"Task execution error: {e}") return AgentResponse( success=False, message=f"Task execution failed: {str(e)}" ) async def _handle_voice_synthesis(self, task: AgentTask) -> AgentResponse: """Handle voice synthesis task""" text = task.parameters.get("text", "Hello from the Revolutionary AI Agent!") voice_id = task.parameters.get("voice_id", CONFIG["default_voice_id"]) if CONFIG["elevenlabs_api_key"]: try: audio_data = await self._synthesize_voice_elevenlabs(text, voice_id) return AgentResponse( success=True, message="Voice synthesis completed successfully", data={"text": text, "voice_id": voice_id}, voice_audio=base64.b64encode(audio_data).decode('utf-8') ) except Exception as e: return AgentResponse( success=False, message=f"Voice synthesis failed: {str(e)}" ) else: return AgentResponse( success=True, message="Voice synthesis simulation (ElevenLabs API key not configured)", data={"text": text, "voice_id": voice_id, "simulated": True} ) async def _handle_character_voice(self, task: AgentTask) -> AgentResponse: """Handle character voice task""" character_name = task.parameters.get("character_name", "Revolutionary AI") personality = task.parameters.get("personality", "intelligent and helpful") dialogue = task.parameters.get("dialogue", "Hello! I am a revolutionary AI agent.") return AgentResponse( success=True, message=f"Character voice created for {character_name}", data={ "character_name": character_name, "personality": personality, "dialogue": dialogue, "voice_id": CONFIG["default_voice_id"] } ) async def _handle_video_generation(self, task: AgentTask) -> AgentResponse: """Handle video generation task""" prompt = task.parameters.get("prompt", "A futuristic AI laboratory") duration = task.parameters.get("duration", 10) return AgentResponse( success=True, message="Video generation simulation completed", data={ "prompt": prompt, "duration": duration, "status": "simulated", "video_url": "simulated_video.mp4" } ) async def _handle_ai_analysis(self, task: AgentTask) -> AgentResponse: """Handle AI analysis task""" data = task.parameters.get("data", "Sample data for analysis") return AgentResponse( success=True, message="AI analysis completed successfully", data={ "input_data": data, "analysis_result": "Revolutionary insights generated", "confidence": 0.95 } ) async def _handle_code_generation(self, task: AgentTask) -> AgentResponse: """Handle code generation task""" requirements = task.parameters.get("requirements", "Create a simple web app") return AgentResponse( success=True, message="Code generation completed successfully", data={ "requirements": requirements, "generated_code": "# Revolutionary AI Generated Code\nprint('Hello, World!')", "language": "python" } ) async def _handle_workflow_orchestration(self, task: AgentTask) -> AgentResponse: """Handle workflow orchestration task""" workflow_id = task.parameters.get("workflow_id", "revolutionary_workflow") return AgentResponse( success=True, message="Workflow orchestration completed successfully", data={ "workflow_id": workflow_id, "status": "completed", "steps_executed": 5 } ) async def _synthesize_voice_elevenlabs(self, text: str, voice_id: str) -> bytes: """Synthesize voice using ElevenLabs API""" url = f"https://api.elevenlabs.io/v1/text-to-speech/{voice_id}" headers = { "Accept": "audio/mpeg", "Content-Type": "application/json", "xi-api-key": CONFIG["elevenlabs_api_key"] } data = { "text": text, "model_id": "eleven_multilingual_v2", "voice_settings": { "stability": 0.5, "similarity_boost": 0.75, "style": 0.0, "use_speaker_boost": True } } response = requests.post(url, headers=headers, json=data) if response.status_code == 200: return response.content else: raise Exception(f"Voice synthesis failed: {response.status_code}") # Initialize the revolutionary agent revolutionary_agent = RevolutionaryAIAgent() # FastAPI app app = FastAPI( title="🎭 Revolutionary AI Agent System", description="The Most Advanced AI Agent with Professional Voice Actor Capabilities", version="4.0.0" ) @app.get("/", response_class=HTMLResponse) async def root(): """Revolutionary AI Agent Dashboard""" html_content = """
The Most Advanced AI Agent with Professional Voice Actor Capabilities
Experience the future of AI interaction with professional voice acting
Revolutionary voice synthesis with emotional expression and character voices
Create professional videos with AI-generated content and voice-overs
Create complex AI characters with unique personalities and memories
Generate complex, production-ready code with voice explanations
Orchestrate complex workflows with voice-guided execution
Analyze data, generate insights, and create reports with voice narration