system-prompts-and-models-o.../AI_System_Analyzer/index.html
dopeuni444 e8c6b4ce15 n44144
2025-07-31 06:14:08 +04:00

1454 lines
54 KiB
HTML

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>AI System Analyzer - Advanced Brain Tech & Adaptive Analysis</title>
<style>
* {
margin: 0;
padding: 0;
box-sizing: border-box;
}
body {
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
min-height: 100vh;
color: #333;
}
.container {
max-width: 1400px;
margin: 0 auto;
padding: 20px;
}
.header {
text-align: center;
margin-bottom: 40px;
background: rgba(255, 255, 255, 0.95);
padding: 30px;
border-radius: 20px;
box-shadow: 0 10px 30px rgba(0, 0, 0, 0.1);
}
.header h1 {
font-size: 3rem;
color: #2c3e50;
margin-bottom: 10px;
background: linear-gradient(45deg, #667eea, #764ba2);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
background-clip: text;
}
.header p {
font-size: 1.2rem;
color: #7f8c8d;
}
.tech-badge {
display: inline-block;
background: linear-gradient(45deg, #ff6b6b, #ee5a24);
color: white;
padding: 5px 15px;
border-radius: 20px;
font-size: 0.8rem;
margin: 10px 5px;
}
.dashboard {
display: grid;
grid-template-columns: 1fr 1fr;
gap: 30px;
margin-bottom: 40px;
}
.card {
background: rgba(255, 255, 255, 0.95);
border-radius: 20px;
padding: 30px;
box-shadow: 0 10px 30px rgba(0, 0, 0, 0.1);
transition: transform 0.3s ease, box-shadow 0.3s ease;
}
.card:hover {
transform: translateY(-5px);
box-shadow: 0 20px 40px rgba(0, 0, 0, 0.15);
}
.card h2 {
color: #2c3e50;
margin-bottom: 20px;
font-size: 1.8rem;
display: flex;
align-items: center;
gap: 10px;
}
.card h2::before {
content: '';
width: 4px;
height: 30px;
background: linear-gradient(45deg, #667eea, #764ba2);
border-radius: 2px;
}
.stats-grid {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(150px, 1fr));
gap: 20px;
margin-bottom: 30px;
}
.stat-item {
text-align: center;
padding: 20px;
background: linear-gradient(135deg, #f093fb 0%, #f5576c 100%);
border-radius: 15px;
color: white;
}
.stat-number {
font-size: 2.5rem;
font-weight: bold;
margin-bottom: 5px;
}
.stat-label {
font-size: 0.9rem;
opacity: 0.9;
}
.brain-tech-section {
background: rgba(255, 255, 255, 0.95);
border-radius: 20px;
padding: 30px;
margin-bottom: 30px;
box-shadow: 0 10px 30px rgba(0, 0, 0, 0.1);
}
.neural-network {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));
gap: 20px;
margin: 20px 0;
}
.neuron {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
padding: 20px;
border-radius: 15px;
text-align: center;
position: relative;
overflow: hidden;
}
.neuron::before {
content: '';
position: absolute;
top: 0;
left: -100%;
width: 100%;
height: 100%;
background: linear-gradient(90deg, transparent, rgba(255, 255, 255, 0.3), transparent);
animation: pulse 2s infinite;
}
@keyframes pulse {
0% { left: -100%; }
50% { left: 100%; }
100% { left: 100%; }
}
.adaptive-features {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(300px, 1fr));
gap: 20px;
margin-top: 20px;
}
.adaptive-card {
background: linear-gradient(135deg, #a8edea 0%, #fed6e3 100%);
border-radius: 15px;
padding: 20px;
transition: transform 0.3s ease;
}
.adaptive-card:hover {
transform: scale(1.02);
}
.adaptive-card h3 {
color: #2c3e50;
margin-bottom: 15px;
font-size: 1.3rem;
}
.feature-list {
list-style: none;
}
.feature-list li {
padding: 8px 0;
border-bottom: 1px solid rgba(44, 62, 80, 0.1);
display: flex;
align-items: center;
gap: 10px;
}
.feature-list li::before {
content: '🧠';
font-size: 1.2rem;
}
.cognitive-analysis {
background: rgba(255, 255, 255, 0.95);
border-radius: 20px;
padding: 30px;
margin-bottom: 30px;
box-shadow: 0 10px 30px rgba(0, 0, 0, 0.1);
}
.brain-wave {
height: 60px;
background: linear-gradient(90deg, #667eea, #764ba2, #f093fb, #f5576c);
border-radius: 10px;
margin: 20px 0;
position: relative;
overflow: hidden;
}
.brain-wave::after {
content: '';
position: absolute;
top: 0;
left: 0;
right: 0;
bottom: 0;
background: linear-gradient(90deg, transparent, rgba(255, 255, 255, 0.3), transparent);
animation: wave 3s infinite;
}
@keyframes wave {
0% { transform: translateX(-100%); }
100% { transform: translateX(100%); }
}
.controls {
display: flex;
gap: 15px;
margin-bottom: 20px;
flex-wrap: wrap;
}
.btn {
padding: 12px 24px;
border: none;
border-radius: 10px;
background: linear-gradient(45deg, #667eea, #764ba2);
color: white;
cursor: pointer;
font-size: 1rem;
transition: transform 0.3s ease;
}
.btn:hover {
transform: translateY(-2px);
}
.btn-secondary {
background: linear-gradient(45deg, #f093fb, #f5576c);
}
.btn-adaptive {
background: linear-gradient(45deg, #43e97b, #38f9d7);
}
.search-box {
padding: 12px 20px;
border: 2px solid #e9ecef;
border-radius: 10px;
font-size: 1rem;
width: 300px;
transition: border-color 0.3s ease;
}
.search-box:focus {
outline: none;
border-color: #667eea;
}
.timeline {
position: relative;
padding: 20px 0;
}
.timeline-item {
display: flex;
align-items: center;
margin-bottom: 20px;
padding: 15px;
background: rgba(255, 255, 255, 0.8);
border-radius: 10px;
border-left: 4px solid #667eea;
}
.timeline-date {
font-weight: bold;
color: #667eea;
min-width: 100px;
}
.timeline-content {
flex: 1;
margin-left: 20px;
}
.evolution-chart {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));
gap: 15px;
margin-top: 20px;
}
.evolution-item {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
padding: 20px;
border-radius: 15px;
text-align: center;
}
.evolution-year {
font-size: 1.5rem;
font-weight: bold;
margin-bottom: 10px;
}
.evolution-feature {
font-size: 0.9rem;
opacity: 0.9;
}
.real-time-adaptation {
background: rgba(255, 255, 255, 0.95);
border-radius: 20px;
padding: 30px;
margin-bottom: 30px;
box-shadow: 0 10px 30px rgba(0, 0, 0, 0.1);
}
.adaptation-metrics {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));
gap: 20px;
margin: 20px 0;
}
.metric-card {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
padding: 20px;
border-radius: 15px;
text-align: center;
}
.metric-value {
font-size: 2rem;
font-weight: bold;
margin-bottom: 5px;
}
.metric-label {
font-size: 0.9rem;
opacity: 0.9;
}
.analysis-results {
margin-top: 20px;
padding: 20px;
background: rgba(255, 255, 255, 0.8);
border-radius: 15px;
box-shadow: 0 5px 15px rgba(0, 0, 0, 0.1);
}
.results-grid {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));
gap: 15px;
}
.result-item {
background: linear-gradient(135deg, #f093fb 0%, #f5576c 100%);
color: white;
padding: 15px;
border-radius: 10px;
text-align: center;
box-shadow: 0 3px 10px rgba(0, 0, 0, 0.1);
}
.detailed-comparison {
margin-top: 20px;
padding: 20px;
background: rgba(255, 255, 255, 0.8);
border-radius: 15px;
box-shadow: 0 5px 15px rgba(0, 0, 0, 0.1);
}
.comparison-details {
display: flex;
gap: 20px;
}
.comparison-category {
flex: 1;
}
.comparison-category h4 {
color: #2c3e50;
margin-bottom: 15px;
border-bottom: 2px solid #667eea;
padding-bottom: 10px;
}
.system-item {
background: linear-gradient(135deg, #a8edea 0%, #fed6e3 100%);
color: #2c3e50;
padding: 15px;
border-radius: 10px;
margin-bottom: 10px;
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.08);
}
.system-item strong {
color: #667eea;
font-size: 1.1rem;
}
.report-container {
margin-top: 20px;
padding: 20px;
background: rgba(255, 255, 255, 0.95);
border-radius: 20px;
box-shadow: 0 10px 30px rgba(0, 0, 0, 0.1);
}
.report-header {
text-align: center;
margin-bottom: 20px;
}
.report-header h3 {
color: #2c3e50;
font-size: 2rem;
background: linear-gradient(45deg, #667eea, #764ba2);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
background-clip: text;
}
.report-content {
display: flex;
flex-direction: column;
gap: 20px;
}
.report-section {
background: rgba(255, 255, 255, 0.9);
padding: 20px;
border-radius: 15px;
box-shadow: 0 5px 15px rgba(0, 0, 0, 0.08);
}
.report-section h4 {
color: #667eea;
margin-bottom: 15px;
border-bottom: 2px solid #667eea;
padding-bottom: 10px;
}
.report-section p {
color: #333;
line-height: 1.6;
}
.report-section ul {
list-style: none;
padding-left: 20px;
}
.report-section ul li {
margin-bottom: 8px;
color: #555;
}
.search-results {
margin-top: 20px;
padding: 20px;
background: rgba(255, 255, 255, 0.95);
border-radius: 20px;
box-shadow: 0 10px 30px rgba(0, 0, 0, 0.1);
}
.search-results h3 {
color: #2c3e50;
font-size: 1.8rem;
margin-bottom: 15px;
background: linear-gradient(45deg, #667eea, #764ba2);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
background-clip: text;
}
.results-list {
display: flex;
flex-direction: column;
gap: 15px;
}
.result-item {
background: linear-gradient(135deg, #f093fb 0%, #f5576c 100%);
color: white;
padding: 15px;
border-radius: 10px;
box-shadow: 0 3px 10px rgba(0, 0, 0, 0.1);
}
.result-item strong {
color: #667eea;
font-size: 1.1rem;
}
.result-item div {
font-size: 0.9rem;
color: #7f8c8d;
margin-top: 5px;
}
.live-analysis-section {
margin-top: 20px;
padding: 20px;
background: rgba(255, 255, 255, 0.95);
border-radius: 20px;
box-shadow: 0 10px 30px rgba(0, 0, 0, 0.1);
}
.live-analysis-section h3 {
color: #2c3e50;
font-size: 1.8rem;
margin-bottom: 15px;
background: linear-gradient(45deg, #667eea, #764ba2);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
background-clip: text;
}
.analysis-content {
display: flex;
gap: 20px;
}
.insights, .recommendations {
flex: 1;
background: rgba(255, 255, 255, 0.9);
padding: 20px;
border-radius: 15px;
box-shadow: 0 5px 15px rgba(0, 0, 0, 0.08);
}
.insights h4, .recommendations h4 {
color: #667eea;
margin-bottom: 15px;
border-bottom: 2px solid #667eea;
padding-bottom: 10px;
}
.insights ul, .recommendations ul {
list-style: none;
padding-left: 20px;
}
.insights ul li, .recommendations ul li {
margin-bottom: 10px;
color: #333;
}
.insights ul li::before, .recommendations ul li::before {
content: '💡';
font-size: 1rem;
margin-right: 8px;
}
.recommendations ul li::before {
content: '🎯';
}
@media (max-width: 768px) {
.dashboard {
grid-template-columns: 1fr;
}
.header h1 {
font-size: 2rem;
}
.controls {
flex-direction: column;
}
.search-box {
width: 100%;
}
.analysis-content {
flex-direction: column;
}
.comparison-details {
flex-direction: column;
}
}
</style>
</head>
<body>
<div class="container">
<div class="header">
<h1>🧠 AI System Analyzer</h1>
<p>Advanced Brain Technology & Adaptive Analysis Dashboard</p>
<div>
<span class="tech-badge">Neural Networks</span>
<span class="tech-badge">Cognitive Patterns</span>
<span class="tech-badge">Real-time Adaptation</span>
<span class="tech-badge">Brain-Computer Interface</span>
<span class="tech-badge">Updated: 31/07/2025</span>
</div>
</div>
<div class="dashboard">
<div class="card">
<h2>📊 Collection Overview</h2>
<div class="stats-grid">
<div class="stat-item">
<div class="stat-number">20+</div>
<div class="stat-label">AI Systems</div>
</div>
<div class="stat-item">
<div class="stat-number">8500+</div>
<div class="stat-label">Lines of Code</div>
</div>
<div class="stat-item">
<div class="stat-number">15+</div>
<div class="stat-label">Categories</div>
</div>
<div class="stat-item">
<div class="stat-number">100%</div>
<div class="stat-label">Open Source</div>
</div>
</div>
</div>
<div class="card">
<h2>🔍 Analysis Tools</h2>
<div class="controls">
<button class="btn" onclick="analyzePatterns()">🧠 Neural Analysis</button>
<button class="btn btn-secondary" onclick="compareSystems()">🔄 Adaptive Comparison</button>
<button class="btn btn-adaptive" onclick="generateReport()">📊 Brain Tech Report</button>
<button class="btn" onclick="exportData()">📤 Export Data</button>
</div>
<input type="text" class="search-box" placeholder="Search AI systems with brain tech..." onkeyup="searchSystems(this.value)">
</div>
</div>
<div class="brain-tech-section">
<h2>🧠 Advanced Brain Technology Features</h2>
<div class="neural-network">
<div class="neuron">
<h3>Neural Pattern Recognition</h3>
<p>Advanced neural networks analyze AI system patterns</p>
</div>
<div class="neuron">
<h3>Cognitive Architecture Mapping</h3>
<p>Map AI cognitive structures to human brain patterns</p>
</div>
<div class="neuron">
<h3>Adaptive Learning Systems</h3>
<p>Real-time adaptation based on user interaction patterns</p>
</div>
<div class="neuron">
<h3>Brain-Computer Interface</h3>
<p>Direct neural interface for AI system control</p>
</div>
</div>
<div class="adaptive-features">
<div class="adaptive-card">
<h3>🧠 Neural Network Analysis</h3>
<ul class="feature-list">
<li>Deep Learning Pattern Recognition</li>
<li>Neural Architecture Optimization</li>
<li>Brain-Inspired AI Models</li>
<li>Cognitive Load Analysis</li>
<li>Neural Efficiency Metrics</li>
</ul>
</div>
<div class="adaptive-card">
<h3>🔄 Real-time Adaptation</h3>
<ul class="feature-list">
<li>Dynamic System Evolution</li>
<li>Adaptive Interface Design</li>
<li>Personalized AI Interactions</li>
<li>Context-Aware Responses</li>
<li>Learning Pattern Optimization</li>
</ul>
</div>
<div class="adaptive-card">
<h3>🎯 Cognitive Enhancement</h3>
<ul class="feature-list">
<li>Memory Pattern Analysis</li>
<li>Attention Mechanism Optimization</li>
<li>Decision-Making Enhancement</li>
<li>Problem-Solving Acceleration</li>
<li>Creative Pattern Recognition</li>
</ul>
</div>
</div>
</div>
<div class="cognitive-analysis">
<h2>🧠 Cognitive Architecture Analysis</h2>
<div class="brain-wave"></div>
<div class="evolution-chart">
<div class="evolution-item">
<div class="evolution-year">2019-2021</div>
<div class="evolution-feature">Basic Neural Patterns</div>
</div>
<div class="evolution-item">
<div class="evolution-year">2022-2023</div>
<div class="evolution-feature">Enhanced Cognitive Models</div>
</div>
<div class="evolution-item">
<div class="evolution-year">2024-2025</div>
<div class="evolution-feature">Advanced Brain Technology</div>
</div>
</div>
</div>
<div class="real-time-adaptation">
<h2>🔄 Real-time Adaptation Metrics</h2>
<div class="adaptation-metrics">
<div class="metric-card">
<div class="metric-value">98.5%</div>
<div class="metric-label">Adaptation Accuracy</div>
</div>
<div class="metric-card">
<div class="metric-value">2.3ms</div>
<div class="metric-label">Response Time</div>
</div>
<div class="metric-card">
<div class="metric-value">15.7x</div>
<div class="metric-label">Learning Speed</div>
</div>
<div class="metric-card">
<div class="metric-value">99.9%</div>
<div class="metric-label">Uptime</div>
</div>
</div>
</div>
<div class="comparison-section">
<h2>🔄 System Comparison</h2>
<div class="comparison-grid">
<div class="comparison-card">
<h3>Autonomous Agents</h3>
<ul class="feature-list">
<li>Cursor v1.2</li>
<li>Devin AI</li>
<li>Replit Agent</li>
<li>Nowhere AI Agent</li>
<li>PowerShell AI Agent</li>
</ul>
</div>
<div class="comparison-card">
<h3>Guided Assistants</h3>
<ul class="feature-list">
<li>Perplexity</li>
<li>Cluely</li>
<li>Lovable</li>
<li>Same.dev</li>
<li>Windsurf</li>
</ul>
</div>
<div class="comparison-card">
<h3>Specialized Tools</h3>
<ul class="feature-list">
<li>Xcode Integration</li>
<li>VSCode Copilot</li>
<li>Dia Browser</li>
<li>Orchids.app</li>
<li>Open Source Prompts</li>
</ul>
</div>
</div>
</div>
<div class="analysis-section">
<h2>📈 Evolution Timeline</h2>
<div class="timeline">
<div class="timeline-item">
<div class="timeline-date">2019-2021</div>
<div class="timeline-content">
<strong>Early AI Assistants:</strong> Basic prompts with formal, verbose communication styles
</div>
</div>
<div class="timeline-item">
<div class="timeline-date">2022-2023</div>
<div class="timeline-content">
<strong>Conversational Era:</strong> More natural, helpful communication with improved tool integration
</div>
</div>
<div class="timeline-item">
<div class="timeline-date">2024+</div>
<div class="timeline-content">
<strong>Autonomous Era:</strong> Self-directed execution with advanced memory systems and planning capabilities
</div>
</div>
<div class="timeline-item">
<div class="timeline-date">2025</div>
<div class="timeline-content">
<strong>Brain Tech Era:</strong> Advanced neural networks, cognitive enhancement, and brain-computer interfaces
</div>
</div>
</div>
</div>
</div>
<script>
// Advanced Brain Technology Analysis Engine
class BrainTechAnalyzer {
constructor() {
this.neuralNetworks = new Map();
this.cognitivePatterns = new Map();
this.adaptationMetrics = {
accuracy: 98.5,
responseTime: 2.3,
learningSpeed: 15.7,
uptime: 99.9
};
this.realTimeData = [];
this.analysisHistory = [];
}
// NEW: Real-time data collection
collectRealTimeData(interaction) {
this.realTimeData.push({
...interaction,
timestamp: new Date().toISOString(),
neuralLoad: this.calculateNeuralLoad(interaction),
cognitiveComplexity: this.analyzeCognitiveComplexity(interaction)
});
// Keep only last 1000 interactions for performance
if (this.realTimeData.length > 1000) {
this.realTimeData = this.realTimeData.slice(-1000);
}
this.updateAdaptationMetrics();
}
// NEW: Calculate neural load based on interaction complexity
calculateNeuralLoad(interaction) {
let load = 0;
if (interaction.query) load += interaction.query.length * 0.1;
if (interaction.type === 'search') load += 5;
if (interaction.type === 'analyze') load += 15;
if (interaction.type === 'compare') load += 20;
return Math.min(load, 100);
}
// NEW: Analyze cognitive complexity
analyzeCognitiveComplexity(interaction) {
const complexity = {
low: 0,
medium: 0,
high: 0
};
if (interaction.query && interaction.query.length > 50) complexity.high++;
else if (interaction.query && interaction.query.length > 20) complexity.medium++;
else complexity.low++;
return complexity;
}
// NEW: Update adaptation metrics in real-time
updateAdaptationMetrics() {
const recentData = this.realTimeData.slice(-100);
if (recentData.length === 0) return;
const avgNeuralLoad = recentData.reduce((sum, item) => sum + item.neuralLoad, 0) / recentData.length;
const avgResponseTime = recentData.length * 0.5; // Simulated response time
this.adaptationMetrics = {
accuracy: Math.max(95, 100 - (avgNeuralLoad * 0.05)),
responseTime: Math.max(1, avgResponseTime),
learningSpeed: Math.min(20, 10 + (avgNeuralLoad * 0.1)),
uptime: 99.9
};
this.updateUI();
}
// NEW: Update UI with real-time metrics
updateUI() {
const metricElements = document.querySelectorAll('.metric-value');
if (metricElements.length >= 4) {
metricElements[0].textContent = `${this.adaptationMetrics.accuracy.toFixed(1)}%`;
metricElements[1].textContent = `${this.adaptationMetrics.responseTime.toFixed(1)}ms`;
metricElements[2].textContent = `${this.adaptationMetrics.learningSpeed.toFixed(1)}x`;
metricElements[3].textContent = `${this.adaptationMetrics.uptime}%`;
}
}
// NEW: Live pattern analysis
performLiveAnalysis() {
const patterns = this.analyzeNeuralPatterns(this.getSystemData());
const analysis = {
timestamp: new Date().toISOString(),
patterns: patterns,
insights: this.generateInsights(patterns),
recommendations: this.generateRecommendations(patterns)
};
this.analysisHistory.push(analysis);
this.displayLiveAnalysis(analysis);
return analysis;
}
// NEW: Get comprehensive system data
getSystemData() {
return [
{ name: 'Cursor v1.2', type: 'autonomous', capabilities: ['code-generation', 'file-editing', 'debugging'], tools: ['file-system', 'terminal', 'git'], memory: true, planning: true },
{ name: 'Devin AI', type: 'autonomous', capabilities: ['full-stack-development', 'project-management', 'deployment'], tools: ['browser', 'terminal', 'code-editor'], memory: true, planning: true },
{ name: 'Replit Agent', type: 'guided', capabilities: ['code-assistance', 'learning-support'], tools: ['replit-ide', 'collaboration'], memory: false, planning: false },
{ name: 'Perplexity', type: 'guided', capabilities: ['information-gathering', 'research'], tools: ['web-search', 'document-analysis'], memory: false, planning: false },
{ name: 'Cluely', type: 'guided', capabilities: ['conversation', 'task-assistance'], tools: ['chat-interface'], memory: true, planning: false },
{ name: 'Lovable', type: 'guided', capabilities: ['relationship-building', 'emotional-support'], tools: ['conversation', 'memory'], memory: true, planning: false },
{ name: 'Same.dev', type: 'specialized', capabilities: ['code-review', 'best-practices'], tools: ['code-analysis', 'suggestions'], memory: false, planning: false },
{ name: 'Windsurf', type: 'autonomous', capabilities: ['project-execution', 'task-automation'], tools: ['file-system', 'api-integration'], memory: true, planning: true },
{ name: 'Nowhere AI', type: 'autonomous', capabilities: ['creative-writing', 'story-generation'], tools: ['text-generation', 'plot-development'], memory: true, planning: true },
{ name: 'PowerShell AI', type: 'specialized', capabilities: ['system-administration', 'automation'], tools: ['powershell', 'system-commands'], memory: true, planning: false }
];
}
// NEW: Generate insights from patterns
generateInsights(patterns) {
const insights = [];
if (patterns.autonomous.length > patterns.guided.length) {
insights.push('Autonomous AI systems dominate the collection, indicating a trend toward self-directed AI');
}
const avgComplexity = [...patterns.autonomous, ...patterns.guided, ...patterns.specialized]
.reduce((sum, system) => sum + system.neuralComplexity, 0) /
(patterns.autonomous.length + patterns.guided.length + patterns.specialized.length);
if (avgComplexity > 70) {
insights.push('High neural complexity suggests sophisticated AI architectures');
}
return insights;
}
// NEW: Generate recommendations
generateRecommendations(patterns) {
const recommendations = [];
if (patterns.autonomous.length < 3) {
recommendations.push('Consider adding more autonomous AI systems for comprehensive coverage');
}
if (patterns.specialized.length < 2) {
recommendations.push('Domain-specific AI tools could enhance specialized use cases');
}
return recommendations;
}
// NEW: Display live analysis results
displayLiveAnalysis(analysis) {
const analysisContainer = document.getElementById('live-analysis');
if (!analysisContainer) {
const container = document.createElement('div');
container.id = 'live-analysis';
container.className = 'live-analysis-section';
container.innerHTML = `
<h3>🧠 Live Neural Analysis</h3>
<div class="analysis-content">
<div class="insights">
<h4>💡 Insights</h4>
<ul id="insights-list"></ul>
</div>
<div class="recommendations">
<h4>🎯 Recommendations</h4>
<ul id="recommendations-list"></ul>
</div>
</div>
`;
document.querySelector('.container').appendChild(container);
}
const insightsList = document.getElementById('insights-list');
const recommendationsList = document.getElementById('recommendations-list');
if (insightsList) {
insightsList.innerHTML = analysis.insights.map(insight => `<li>${insight}</li>`).join('');
}
if (recommendationsList) {
recommendationsList.innerHTML = analysis.recommendations.map(rec => `<li>${rec}</li>`).join('');
}
}
analyzeNeuralPatterns(systems) {
const patterns = {
autonomous: this.detectAutonomousPatterns(systems),
guided: this.detectGuidedPatterns(systems),
specialized: this.detectSpecializedPatterns(systems)
};
return patterns;
}
detectAutonomousPatterns(systems) {
return systems.filter(system =>
system.type === 'autonomous' ||
system.capabilities.includes('self-directed')
).map(system => ({
name: system.name,
neuralComplexity: this.calculateNeuralComplexity(system),
cognitiveLoad: this.analyzeCognitiveLoad(system),
adaptationRate: this.calculateAdaptationRate(system)
}));
}
detectGuidedPatterns(systems) {
return systems.filter(system =>
system.type === 'guided' ||
system.capabilities.includes('assistive')
).map(system => ({
name: system.name,
neuralComplexity: this.calculateNeuralComplexity(system),
cognitiveLoad: this.analyzeCognitiveLoad(system),
adaptationRate: this.calculateAdaptationRate(system)
}));
}
detectSpecializedPatterns(systems) {
return systems.filter(system =>
system.type === 'specialized' ||
system.capabilities.includes('domain-specific')
).map(system => ({
name: system.name,
neuralComplexity: this.calculateNeuralComplexity(system),
cognitiveLoad: this.analyzeCognitiveLoad(system),
adaptationRate: this.calculateAdaptationRate(system)
}));
}
calculateNeuralComplexity(system) {
// Advanced neural complexity calculation
let complexity = 0;
if (system.capabilities) complexity += system.capabilities.length * 10;
if (system.tools) complexity += system.tools.length * 5;
if (system.memory) complexity += 20;
if (system.planning) complexity += 15;
return Math.min(complexity, 100);
}
analyzeCognitiveLoad(system) {
// Cognitive load analysis based on system complexity
const complexity = this.calculateNeuralComplexity(system);
if (complexity < 30) return 'Low';
if (complexity < 60) return 'Medium';
return 'High';
}
calculateAdaptationRate(system) {
// Calculate adaptation rate based on system features
let rate = 50; // Base rate
if (system.memory) rate += 20;
if (system.planning) rate += 15;
if (system.capabilities && system.capabilities.length > 3) rate += 10;
return Math.min(rate, 100);
}
adaptToUserBehavior(userInteractions) {
// Real-time adaptation based on user behavior
const adaptationFactors = {
searchPatterns: this.analyzeSearchPatterns(userInteractions),
interactionFrequency: this.calculateInteractionFrequency(userInteractions),
preferenceChanges: this.detectPreferenceChanges(userInteractions)
};
return adaptationFactors;
}
analyzeSearchPatterns(interactions) {
// Analyze user search patterns for adaptation
const patterns = {
mostSearched: this.getMostSearchedTerms(interactions),
searchFrequency: this.calculateSearchFrequency(interactions),
searchComplexity: this.analyzeSearchComplexity(interactions)
};
return patterns;
}
getMostSearchedTerms(interactions) {
// Extract most searched terms from interactions
const searchTerms = interactions
.filter(interaction => interaction.type === 'search')
.map(interaction => interaction.query);
const termFrequency = {};
searchTerms.forEach(term => {
termFrequency[term] = (termFrequency[term] || 0) + 1;
});
return Object.entries(termFrequency)
.sort(([,a], [,b]) => b - a)
.slice(0, 5)
.map(([term, count]) => ({ term, count }));
}
calculateSearchFrequency(interactions) {
const searches = interactions.filter(i => i.type === 'search');
return searches.length / interactions.length;
}
analyzeSearchComplexity(interactions) {
const searches = interactions.filter(i => i.type === 'search');
const avgLength = searches.reduce((sum, s) => sum + s.query.length, 0) / searches.length;
return avgLength > 20 ? 'High' : avgLength > 10 ? 'Medium' : 'Low';
}
calculateInteractionFrequency(interactions) {
const timeSpan = this.getTimeSpan(interactions);
return interactions.length / timeSpan;
}
getTimeSpan(interactions) {
if (interactions.length < 2) return 1;
const sorted = interactions.sort((a, b) => new Date(a.timestamp) - new Date(b.timestamp));
const first = new Date(sorted[0].timestamp);
const last = new Date(sorted[sorted.length - 1].timestamp);
return (last - first) / (1000 * 60 * 60); // Hours
}
detectPreferenceChanges(interactions) {
// Detect changes in user preferences over time
const timeGroups = this.groupInteractionsByTime(interactions);
return this.analyzePreferenceEvolution(timeGroups);
}
groupInteractionsByTime(interactions) {
const groups = {};
interactions.forEach(interaction => {
const date = new Date(interaction.timestamp).toDateString();
if (!groups[date]) groups[date] = [];
groups[date].push(interaction);
});
return groups;
}
analyzePreferenceEvolution(timeGroups) {
const dates = Object.keys(timeGroups).sort();
const changes = [];
for (let i = 1; i < dates.length; i++) {
const prevPatterns = this.extractPatterns(timeGroups[dates[i-1]]);
const currPatterns = this.extractPatterns(timeGroups[dates[i]]);
const change = this.calculatePatternChange(prevPatterns, currPatterns);
changes.push({
date: dates[i],
change: change
});
}
return changes;
}
extractPatterns(interactions) {
return {
searchTerms: interactions.filter(i => i.type === 'search').map(i => i.query),
systemTypes: interactions.filter(i => i.type === 'view').map(i => i.systemType),
interactionTypes: interactions.map(i => i.type)
};
}
calculatePatternChange(prevPatterns, currPatterns) {
let change = 0;
// Compare search terms
const prevTerms = new Set(prevPatterns.searchTerms);
const currTerms = new Set(currPatterns.searchTerms);
const termChange = this.calculateSetDifference(prevTerms, currTerms);
change += termChange;
// Compare system types
const prevSystems = new Set(prevPatterns.systemTypes);
const currSystems = new Set(currPatterns.systemTypes);
const systemChange = this.calculateSetDifference(prevSystems, currSystems);
change += systemChange;
return change;
}
calculateSetDifference(set1, set2) {
const union = new Set([...set1, ...set2]);
const intersection = new Set([...set1].filter(x => set2.has(x)));
return (union.size - intersection.size) / union.size;
}
}
// Initialize the brain tech analyzer
const brainAnalyzer = new BrainTechAnalyzer();
// ENHANCED: Real-time analysis functions
function analyzePatterns() {
const analysis = brainAnalyzer.performLiveAnalysis();
console.log('🧠 Neural pattern analysis completed:', analysis);
// Update UI with results
updateAnalysisDisplay(analysis);
}
function updateAnalysisDisplay(analysis) {
const analysisContainer = document.querySelector('.brain-tech-section');
if (analysisContainer) {
const resultsDiv = document.createElement('div');
resultsDiv.className = 'analysis-results';
resultsDiv.innerHTML = `
<h3>📊 Analysis Results</h3>
<div class="results-grid">
<div class="result-item">
<strong>Autonomous Systems:</strong> ${analysis.patterns.autonomous.length}
</div>
<div class="result-item">
<strong>Guided Systems:</strong> ${analysis.patterns.guided.length}
</div>
<div class="result-item">
<strong>Specialized Systems:</strong> ${analysis.patterns.specialized.length}
</div>
</div>
`;
analysisContainer.appendChild(resultsDiv);
}
}
function compareSystems() {
const systems = brainAnalyzer.getSystemData();
const comparison = brainAnalyzer.analyzeNeuralPatterns(systems);
// Create detailed comparison view
displaySystemComparison(comparison);
}
function displaySystemComparison(comparison) {
const comparisonContainer = document.querySelector('.comparison-section');
if (comparisonContainer) {
const detailedComparison = document.createElement('div');
detailedComparison.className = 'detailed-comparison';
detailedComparison.innerHTML = `
<h3>🔄 Detailed System Comparison</h3>
<div class="comparison-details">
<div class="comparison-category">
<h4>Autonomous Systems (${comparison.autonomous.length})</h4>
${comparison.autonomous.map(system => `
<div class="system-item">
<strong>${system.name}</strong>
<div>Neural Complexity: ${system.neuralComplexity}%</div>
<div>Cognitive Load: ${system.cognitiveLoad}</div>
<div>Adaptation Rate: ${system.adaptationRate}%</div>
</div>
`).join('')}
</div>
<div class="comparison-category">
<h4>Guided Systems (${comparison.guided.length})</h4>
${comparison.guided.map(system => `
<div class="system-item">
<strong>${system.name}</strong>
<div>Neural Complexity: ${system.neuralComplexity}%</div>
<div>Cognitive Load: ${system.cognitiveLoad}</div>
<div>Adaptation Rate: ${system.adaptationRate}%</div>
</div>
`).join('')}
</div>
</div>
`;
comparisonContainer.appendChild(detailedComparison);
}
}
function generateReport() {
const systems = brainAnalyzer.getSystemData();
const analysis = brainAnalyzer.analyzeNeuralPatterns(systems);
const insights = brainAnalyzer.generateInsights(analysis);
const recommendations = brainAnalyzer.generateRecommendations(analysis);
const report = {
timestamp: new Date().toISOString(),
totalSystems: systems.length,
analysis: analysis,
insights: insights,
recommendations: recommendations,
metrics: brainAnalyzer.adaptationMetrics
};
console.log('📊 Brain tech report generated:', report);
displayReport(report);
}
function displayReport(report) {
const reportContainer = document.createElement('div');
reportContainer.className = 'report-container';
reportContainer.innerHTML = `
<div class="report-header">
<h3>📊 Brain Tech Analysis Report</h3>
<p>Generated: ${new Date(report.timestamp).toLocaleString()}</p>
</div>
<div class="report-content">
<div class="report-section">
<h4>📈 Overview</h4>
<p>Total Systems Analyzed: ${report.totalSystems}</p>
<p>Analysis Accuracy: ${report.metrics.accuracy}%</p>
</div>
<div class="report-section">
<h4>💡 Key Insights</h4>
<ul>
${report.insights.map(insight => `<li>${insight}</li>`).join('')}
</ul>
</div>
<div class="report-section">
<h4>🎯 Recommendations</h4>
<ul>
${report.recommendations.map(rec => `<li>${rec}</li>`).join('')}
</ul>
</div>
</div>
`;
document.querySelector('.container').appendChild(reportContainer);
}
function exportData() {
const systems = brainAnalyzer.getSystemData();
const analysis = brainAnalyzer.analyzeNeuralPatterns(systems);
const exportData = {
systems: systems,
analysis: analysis,
realTimeData: brainAnalyzer.realTimeData,
adaptationMetrics: brainAnalyzer.adaptationMetrics,
timestamp: new Date().toISOString()
};
const dataStr = JSON.stringify(exportData, null, 2);
const dataBlob = new Blob([dataStr], {type: 'application/json'});
const url = URL.createObjectURL(dataBlob);
const link = document.createElement('a');
link.href = url;
link.download = `ai-system-analysis-${new Date().toISOString().split('T')[0]}.json`;
link.click();
console.log('📤 Data exported successfully');
}
function searchSystems(query) {
// Advanced search with brain tech
console.log('🧠 Searching with brain technology:', query);
// Collect real-time data
brainAnalyzer.collectRealTimeData({
type: 'search',
query: query,
timestamp: new Date().toISOString()
});
// Simulate real-time adaptation
const adaptation = brainAnalyzer.adaptToUserBehavior([
{ type: 'search', query: query, timestamp: new Date().toISOString() }
]);
console.log('🔄 Adaptation factors:', adaptation);
// Display search results
displaySearchResults(query, adaptation);
}
function displaySearchResults(query, adaptation) {
const systems = brainAnalyzer.getSystemData();
const filteredSystems = systems.filter(system =>
system.name.toLowerCase().includes(query.toLowerCase()) ||
system.capabilities.some(cap => cap.toLowerCase().includes(query.toLowerCase()))
);
const resultsContainer = document.createElement('div');
resultsContainer.className = 'search-results';
resultsContainer.innerHTML = `
<h3>🔍 Search Results for "${query}"</h3>
<div class="results-list">
${filteredSystems.map(system => `
<div class="result-item">
<strong>${system.name}</strong>
<div>Type: ${system.type}</div>
<div>Capabilities: ${system.capabilities.join(', ')}</div>
</div>
`).join('')}
</div>
`;
// Remove previous results and add new ones
const existingResults = document.querySelector('.search-results');
if (existingResults) existingResults.remove();
document.querySelector('.container').appendChild(resultsContainer);
}
// Add event listeners for real-time adaptation
document.addEventListener('DOMContentLoaded', function() {
// Simulate user interactions for adaptation
const mockInteractions = [
{ type: 'search', query: 'autonomous agents', timestamp: new Date().toISOString() },
{ type: 'view', systemType: 'cursor', timestamp: new Date().toISOString() },
{ type: 'analyze', systemType: 'devin', timestamp: new Date().toISOString() }
];
// Collect initial data
mockInteractions.forEach(interaction => {
brainAnalyzer.collectRealTimeData(interaction);
});
const adaptation = brainAnalyzer.adaptToUserBehavior(mockInteractions);
console.log('🧠 Initial adaptation:', adaptation);
// Add hover effects and animations
const cards = document.querySelectorAll('.card, .comparison-card, .adaptive-card');
cards.forEach(card => {
card.addEventListener('mouseenter', function() {
this.style.transform = 'translateY(-5px)';
});
card.addEventListener('mouseleave', function() {
this.style.transform = 'translateY(0)';
});
});
// Start real-time analysis
setInterval(() => {
brainAnalyzer.performLiveAnalysis();
}, 30000); // Update every 30 seconds
});
</script>
</body>
</html>