system-prompts-and-models-o.../Untitled.ipynb
behicof 5a3b176741
2025-05-16 00:28:06 +03:30

56 lines
1.2 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "994f67e0-ce39-492f-bb9a-088f7885c1d6",
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"\n",
"# Load dataset\n",
"df = pd.read_csv('data.csv')\n",
"\n",
"# Display first few rows of the dataset\n",
"df.head()\n",
"\n",
"# Summary statistics\n",
"df.describe()\n",
"\n",
"# Data visualization\n",
"plt.figure(figsize=(10, 6))\n",
"sns.histplot(df['column_name'], bins=30, kde=True)\n",
"plt.title('Distribution of Column Name')\n",
"plt.xlabel('Column Name')\n",
"plt.ylabel('Frequency')\n",
"plt.show()\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}