system-prompts-and-models-o.../claude_skills/ml-model-integration/SKILL.md
Claude 484f6c6b17
Add 25 world-class Claude Code skills for comprehensive software development
Created comprehensive skill collection covering all aspects of modern software
development with production-ready patterns, best practices, and detailed documentation.

## Skills Organized by Domain

### Code Quality & Architecture (2 skills)
- advanced-code-refactoring: SOLID principles, design patterns, refactoring patterns
- code-review: Automated/manual review, security, performance, maintainability

### API & Integration (2 skills)
- api-integration-expert: REST/GraphQL/WebSocket with auth, retry, caching
- graphql-schema-design: Schema design, resolvers, optimization, subscriptions

### Database & Data (3 skills)
- database-optimization: SQL/NoSQL tuning, indexing, query optimization
- data-pipeline: ETL/ELT with Airflow, Spark, dbt
- caching-strategies: Redis, Memcached, CDN, invalidation patterns

### Security & Authentication (2 skills)
- security-audit: OWASP Top 10, vulnerability scanning, security hardening
- auth-implementation: OAuth2, JWT, session management, SSO

### Testing & Quality (2 skills)
- test-automation: Unit/integration/E2E tests, TDD/BDD, coverage
- performance-profiling: CPU/memory profiling, Core Web Vitals optimization

### DevOps & Infrastructure (3 skills)
- docker-kubernetes: Containerization, orchestration, production deployments
- ci-cd-pipeline: GitHub Actions, automated testing, deployment strategies
- logging-monitoring: Observability with Datadog, Prometheus, Grafana, ELK

### Frontend Development (3 skills)
- frontend-accessibility: WCAG 2.1 compliance, ARIA, keyboard navigation
- ui-component-library: Design systems with React/Vue, Storybook
- mobile-responsive: Responsive design, mobile-first, PWAs

### Backend & Scaling (2 skills)
- backend-scaling: Load balancing, sharding, microservices, horizontal scaling
- real-time-systems: WebSockets, SSE, WebRTC for real-time features

### ML & AI (1 skill)
- ml-model-integration: Model serving, inference optimization, monitoring

### Development Tools (2 skills)
- git-workflow-optimizer: Git workflows, branching strategies, conflict resolution
- dependency-management: Package updates, security patches, version conflicts

### Code Maintenance (3 skills)
- error-handling: Robust error patterns, logging, graceful degradation
- documentation-generator: API docs, README, technical specifications
- migration-tools: Database/framework migrations with zero downtime

## Key Features

Each skill includes:
- YAML frontmatter with name, description, allowed tools
- Clear purpose and when to use
- Comprehensive capabilities overview
- Production-ready code examples
- Best practices and patterns
- Success criteria
- Tool-specific configurations

## Highlights

- 25 comprehensive skills covering full development lifecycle
- Production-ready patterns and examples
- Security-first approach throughout
- Performance optimization built-in
- Comprehensive testing strategies
- DevOps automation and infrastructure as code
- Modern frontend with accessibility focus
- Scalable backend architectures
- Data engineering and ML integration
- Advanced Git workflows

## File Structure

claude_skills/
├── README.md (comprehensive documentation)
├── advanced-code-refactoring/
│   ├── SKILL.md (main skill definition)
│   ├── reference.md (design patterns, SOLID principles)
│   └── examples.md (refactoring examples)
├── api-integration-expert/
│   └── SKILL.md (REST/GraphQL/WebSocket integration)
├── [23 more skills...]

Total: 25 skills + comprehensive README + supporting documentation

## Usage

Personal skills: cp -r claude_skills/* ~/.claude/skills/
Project skills: cp -r claude_skills/* .claude/skills/

Skills automatically activate based on context and description triggers.
2025-11-11 23:20:08 +00:00

85 lines
2.2 KiB
Markdown

---
name: ml-model-integration
description: Expert in integrating AI/ML models into applications including model serving, API design, inference optimization, and monitoring. Use when deploying ML models, building AI features, or optimizing model performance in production.
allowed-tools: Read, Write, Edit, Grep, Glob, Bash
---
# ML Model Integration Expert
## Purpose
Deploy and integrate machine learning models into production applications.
## Capabilities
- Model serving (FastAPI, TensorFlow Serving)
- Inference optimization
- A/B testing models
- Model versioning
- Monitoring and drift detection
- Batch and real-time inference
- Feature stores
## FastAPI Model Serving
```python
from fastapi import FastAPI
from pydantic import BaseModel
import joblib
import numpy as np
app = FastAPI()
# Load model at startup
model = joblib.load('model.pkl')
class PredictionRequest(BaseModel):
features: list[float]
class PredictionResponse(BaseModel):
prediction: float
confidence: float
@app.post('/predict', response_model=PredictionResponse)
async def predict(request: PredictionRequest):
features = np.array([request.features])
prediction = model.predict(features)[0]
confidence = model.predict_proba(features).max()
return PredictionResponse(
prediction=float(prediction),
confidence=float(confidence)
)
@app.get('/health')
async def health():
return {'status': 'healthy', 'model_version': '1.0.0'}
```
## Model Monitoring
```python
import mlflow
# Log model performance
with mlflow.start_run():
mlflow.log_metric('accuracy', accuracy)
mlflow.log_metric('precision', precision)
mlflow.log_metric('recall', recall)
mlflow.log_param('model_type', 'random_forest')
mlflow.sklearn.log_model(model, 'model')
# Monitor drift
from evidently import ColumnMapping
from evidently.report import Report
from evidently.metric_preset import DataDriftPreset
report = Report(metrics=[DataDriftPreset()])
report.run(reference_data=train_data, current_data=prod_data)
report.save_html('drift_report.html')
```
## Success Criteria
- ✓ Inference latency < 100ms
- Model accuracy monitored
- A/B testing framework
- Rollback capability
- Feature drift detected