system-prompts-and-models-o.../claude_skills/ml-model-integration/SKILL.md
Claude 484f6c6b17
Add 25 world-class Claude Code skills for comprehensive software development
Created comprehensive skill collection covering all aspects of modern software
development with production-ready patterns, best practices, and detailed documentation.

## Skills Organized by Domain

### Code Quality & Architecture (2 skills)
- advanced-code-refactoring: SOLID principles, design patterns, refactoring patterns
- code-review: Automated/manual review, security, performance, maintainability

### API & Integration (2 skills)
- api-integration-expert: REST/GraphQL/WebSocket with auth, retry, caching
- graphql-schema-design: Schema design, resolvers, optimization, subscriptions

### Database & Data (3 skills)
- database-optimization: SQL/NoSQL tuning, indexing, query optimization
- data-pipeline: ETL/ELT with Airflow, Spark, dbt
- caching-strategies: Redis, Memcached, CDN, invalidation patterns

### Security & Authentication (2 skills)
- security-audit: OWASP Top 10, vulnerability scanning, security hardening
- auth-implementation: OAuth2, JWT, session management, SSO

### Testing & Quality (2 skills)
- test-automation: Unit/integration/E2E tests, TDD/BDD, coverage
- performance-profiling: CPU/memory profiling, Core Web Vitals optimization

### DevOps & Infrastructure (3 skills)
- docker-kubernetes: Containerization, orchestration, production deployments
- ci-cd-pipeline: GitHub Actions, automated testing, deployment strategies
- logging-monitoring: Observability with Datadog, Prometheus, Grafana, ELK

### Frontend Development (3 skills)
- frontend-accessibility: WCAG 2.1 compliance, ARIA, keyboard navigation
- ui-component-library: Design systems with React/Vue, Storybook
- mobile-responsive: Responsive design, mobile-first, PWAs

### Backend & Scaling (2 skills)
- backend-scaling: Load balancing, sharding, microservices, horizontal scaling
- real-time-systems: WebSockets, SSE, WebRTC for real-time features

### ML & AI (1 skill)
- ml-model-integration: Model serving, inference optimization, monitoring

### Development Tools (2 skills)
- git-workflow-optimizer: Git workflows, branching strategies, conflict resolution
- dependency-management: Package updates, security patches, version conflicts

### Code Maintenance (3 skills)
- error-handling: Robust error patterns, logging, graceful degradation
- documentation-generator: API docs, README, technical specifications
- migration-tools: Database/framework migrations with zero downtime

## Key Features

Each skill includes:
- YAML frontmatter with name, description, allowed tools
- Clear purpose and when to use
- Comprehensive capabilities overview
- Production-ready code examples
- Best practices and patterns
- Success criteria
- Tool-specific configurations

## Highlights

- 25 comprehensive skills covering full development lifecycle
- Production-ready patterns and examples
- Security-first approach throughout
- Performance optimization built-in
- Comprehensive testing strategies
- DevOps automation and infrastructure as code
- Modern frontend with accessibility focus
- Scalable backend architectures
- Data engineering and ML integration
- Advanced Git workflows

## File Structure

claude_skills/
├── README.md (comprehensive documentation)
├── advanced-code-refactoring/
│   ├── SKILL.md (main skill definition)
│   ├── reference.md (design patterns, SOLID principles)
│   └── examples.md (refactoring examples)
├── api-integration-expert/
│   └── SKILL.md (REST/GraphQL/WebSocket integration)
├── [23 more skills...]

Total: 25 skills + comprehensive README + supporting documentation

## Usage

Personal skills: cp -r claude_skills/* ~/.claude/skills/
Project skills: cp -r claude_skills/* .claude/skills/

Skills automatically activate based on context and description triggers.
2025-11-11 23:20:08 +00:00

2.2 KiB

name description allowed-tools
ml-model-integration Expert in integrating AI/ML models into applications including model serving, API design, inference optimization, and monitoring. Use when deploying ML models, building AI features, or optimizing model performance in production. Read, Write, Edit, Grep, Glob, Bash

ML Model Integration Expert

Purpose

Deploy and integrate machine learning models into production applications.

Capabilities

  • Model serving (FastAPI, TensorFlow Serving)
  • Inference optimization
  • A/B testing models
  • Model versioning
  • Monitoring and drift detection
  • Batch and real-time inference
  • Feature stores

FastAPI Model Serving

from fastapi import FastAPI
from pydantic import BaseModel
import joblib
import numpy as np

app = FastAPI()

# Load model at startup
model = joblib.load('model.pkl')

class PredictionRequest(BaseModel):
    features: list[float]

class PredictionResponse(BaseModel):
    prediction: float
    confidence: float

@app.post('/predict', response_model=PredictionResponse)
async def predict(request: PredictionRequest):
    features = np.array([request.features])
    prediction = model.predict(features)[0]
    confidence = model.predict_proba(features).max()
    
    return PredictionResponse(
        prediction=float(prediction),
        confidence=float(confidence)
    )

@app.get('/health')
async def health():
    return {'status': 'healthy', 'model_version': '1.0.0'}

Model Monitoring

import mlflow

# Log model performance
with mlflow.start_run():
    mlflow.log_metric('accuracy', accuracy)
    mlflow.log_metric('precision', precision)
    mlflow.log_metric('recall', recall)
    mlflow.log_param('model_type', 'random_forest')
    mlflow.sklearn.log_model(model, 'model')

# Monitor drift
from evidently import ColumnMapping
from evidently.report import Report
from evidently.metric_preset import DataDriftPreset

report = Report(metrics=[DataDriftPreset()])
report.run(reference_data=train_data, current_data=prod_data)
report.save_html('drift_report.html')

Success Criteria

  • ✓ Inference latency < 100ms
  • ✓ Model accuracy monitored
  • ✓ A/B testing framework
  • ✓ Rollback capability
  • ✓ Feature drift detected